Round-Optimal, Fully Secure Distributed Key Generation

Jonathan Katz Google

Work done while at Dfns Labs

Threshold cryptography

Goal: Share a secret key among n parties, such that:

- Any t+1 parties can jointly perform some cryptographic operation
- An adversary compromising up to t parties cannot

Threshold cryptography

Goal: Share a secret key among n parties, such that:

- ullet Any t+1 parties can jointly perform some cryptographic operation
- An adversary compromising up to t parties cannot

Two components of a threshold cryptosystem:

- 1 Key distribution, either via a trusted dealer or a distributed key generation (DKG) protocol
- 2 Distributed protocol for signing, decrypting, etc.

- Define security via an appropriate ideal functionality
 - Modular: secure DKG protocols can be composed with arbitrary (secure) threshold protocols
 - Cleaner; security guarantees more clear

- Define security via an appropriate ideal functionality
 - Modular: secure DKG protocols can be composed with arbitrary (secure) threshold protocols
 - Cleaner; security guarantees more clear
- Study the round complexity of fully secure DKG in the honest-majority setting (assuming synchrony + broadcast)

- Define security via an appropriate ideal functionality
 - Modular: secure DKG protocols can be composed with arbitrary (secure) threshold protocols
 - Cleaner; security guarantees more clear
- Study the round complexity of fully secure DKG in the honest-majority setting (assuming synchrony + broadcast)
 - Lower bound: No one-round protocols (regardless of setup)

- Define security via an appropriate ideal functionality
 - Modular: secure DKG protocols can be composed with arbitrary (secure) threshold protocols
 - Cleaner; security guarantees more clear
- Study the round complexity of fully secure DKG in the honest-majority setting (assuming synchrony + broadcast)
 - Lower bound: No one-round protocols (regardless of setup)
 - Upper bound: Several round-optimal protocols with tradeoffs in terms of efficiency, setup, and assumptions

Notation

- *n* is the total number of parties
- t is an upper bound on the number of corrupted parties
- \mathbb{G} is a cyclic group of prime order q, with generator g

Notation

- *n* is the total number of parties
- t is an upper bound on the number of corrupted parties
- ullet ${\mathbb G}$ is a cyclic group of prime order q, with generator g

(t+1)-out-of-n Shamir secret sharing

To share $s \in \mathbb{Z}_q$:

• Choose $f_1, \ldots, f_t \leftarrow \mathbb{Z}_q$; let $f(X) = f_t \cdot X^t + \cdots + f_1 \cdot X + s$

Notation

- *n* is the total number of parties
- t is an upper bound on the number of corrupted parties
- ullet ${\mathbb G}$ is a cyclic group of prime order q, with generator g

(t+1)-out-of-n Shamir secret sharing

To share $s \in \mathbb{Z}_q$:

- Choose $f_1, \ldots, f_t \leftarrow \mathbb{Z}_q$; let $f(X) = f_t \cdot X^t + \cdots + f_1 \cdot X + s$
 - I.e., choose random degree-t polynomial f(X) subject to f(0) = s

Notation

- *n* is the total number of parties
- t is an upper bound on the number of corrupted parties
- ullet ${\mathbb G}$ is a cyclic group of prime order q, with generator g

(t+1)-out-of-n Shamir secret sharing

To share $s \in \mathbb{Z}_q$:

- Choose $f_1, \ldots, f_t \leftarrow \mathbb{Z}_q$; let $f(X) = f_t \cdot X^t + \cdots + f_1 \cdot X + s$
 - I.e., choose random degree-t polynomial f(X) subject to f(0)=s
- Set *i*th share $\sigma_i := f(i)$ for $i = 1, \ldots, n$

Notation

- *n* is the total number of parties
- t is an upper bound on the number of corrupted parties
- ullet ${\mathbb G}$ is a cyclic group of prime order q, with generator g

(t+1)-out-of-n Shamir secret sharing

To share $s \in \mathbb{Z}_q$:

- Choose $f_1, \ldots, f_t \leftarrow \mathbb{Z}_q$; let $f(X) = f_t \cdot X^t + \cdots + f_1 \cdot X + s$
 - I.e., choose random degree-t polynomial f(X) subject to f(0)=s
- Set *i*th share $\sigma_i := f(i)$ for $i = 1, \ldots, n$
- Any t shares reveal nothing about s
- Can recover s from any t+1 shares using polynomial interpolation

Notation

- *n* is the total number of parties
- t is an upper bound on the number of corrupted parties
- \mathbb{G} is a cyclic group of prime order q, with generator g

Notation

- *n* is the total number of parties
- t is an upper bound on the number of corrupted parties
- ullet ${\mathbb G}$ is a cyclic group of prime order q, with generator g

(t+1)-out-of-n Shamir secret sharing

Fix $C \subset [n]$ with $|C| \leq t$. To share $s \in \mathbb{Z}_q$:

- Let adversary specify $\{\sigma_i\}_{i\in\mathcal{C}}$
- Choose random degree-t polynomial f(X) subject to f(0) = s, $f(i) = \sigma_i$ for $i \in \mathcal{C}$
- Set *i*th share $\sigma_i := f(i)$ for $i \in [n] \setminus C$

Notation

- *n* is the total number of parties
- t is an upper bound on the number of corrupted parties
- ullet ${\mathbb G}$ is a cyclic group of prime order q, with generator g

(t+1)-out-of-n Shamir secret sharing

Fix $C \subset [n]$ with $|C| \leq t$. To share $s \in \mathbb{Z}_q$:

- Let adversary specify $\{\sigma_i\}_{i\in\mathcal{C}}$
- Choose random degree-t polynomial f(X) subject to f(0) = s, $f(i) = \sigma_i$ for $i \in \mathcal{C}$
- Set *i*th share $\sigma_i := f(i)$ for $i \in [n] \setminus \mathcal{C}$
- For any $\mathcal{C}\subseteq\mathcal{C}'$ with $|\mathcal{C}'|=t$, the $\{\sigma_i\}_{i\in\mathcal{C}'}$ reveal nothing about s

Notation

- n is the total number of parties
- t is an upper bound on the number of corrupted parties
- ullet $\Bbb G$ is a cyclic group of prime order q, with generator g

Notation

- n is the total number of parties
- t is an upper bound on the number of corrupted parties
- ullet ${\mathbb G}$ is a cyclic group of prime order q, with generator g

Goal

Distributed protocol for n parties to generate

• Common public key $y = g^x$

Notation

- n is the total number of parties
- t is an upper bound on the number of corrupted parties
- \mathbb{G} is a cyclic group of prime order q, with generator g

Goal

Distributed protocol for n parties to generate

- Common public key $y = g^x$
- (t+1)-out-of-n secret sharing $\sigma_i\}_{i=1}^n$ of the private key x

Notation

- n is the total number of parties
- t is an upper bound on the number of corrupted parties
- ullet ${\mathbb G}$ is a cyclic group of prime order q, with generator g

Goal

Distributed protocol for n parties to generate

- Common public key $y = g^x$
- (t+1)-out-of-n secret sharing $\sigma_i\}_{i=1}^n$ of the private key x
- Common commitments $\{g^{\sigma_i}\}_{i=1}^n$ to the parties' shares

 $[^]a$ Assume Shamir secret sharing, but it could also be n-out-of-n additive sharing

Setup

Parties may have some (correlated) state before protocol execution, e.g.,

- CRS
- PKI
- ROM
- Correlated randomness

Setup

Parties may have some (correlated) state before protocol execution, e.g.,

- CRS
- PKI
- ROM
- Correlated randomness

Ideally, state suffices for an unbounded (polynomial) number of executions

- Correctness: Honest parties should hold a correct sharing of x (and correct commitments to other parties' shares)
- Secrecy: Corrupted parties should not learn anything about x (beyond what is implied by y)

- Correctness: Honest parties should hold a correct sharing of x (and correct commitments to other parties' shares)
- Secrecy: Corrupted parties should not learn anything about x (beyond what is implied by y)
- Unbiasable: Corrupted parties should be unable to bias y

- Correctness: Honest parties should hold a correct sharing of x (and correct commitments to other parties' shares)
- Secrecy: Corrupted parties should not learn anything about x (beyond what is implied by y)
- Unbiasable: Corrupted parties should be unable to bias y
- Robustness (aka guaranteed output delivery): Corrupted parties should be unable to prevent generation of a key

- Correctness: Honest parties should hold a correct sharing of x (and correct commitments to other parties' shares)
- Secrecy: Corrupted parties should not learn anything about x (beyond what is implied by y)
- Unbiasable: Corrupted parties should be unable to bias y
- Robustness (aka guaranteed output delivery): Corrupted parties should be unable to prevent generation of a key
-

Desired security properties:

- Correctness: Honest parties should hold a correct sharing of x (and correct commitments to other parties' shares)
- Secrecy: Corrupted parties should not learn anything about x (beyond what is implied by y)
- Unbiasable: Corrupted parties should be unable to bias y
- Robustness (aka guaranteed output delivery): Corrupted parties should be unable to prevent generation of a key
- ...

Define security via an ideal functionality in a simulation-based framework

Ideal functionalities for (dlog-based) DKG

There are multiple ideal functionalities one could consider for DKG (see paper for examples and discussion)

Here: (one possible) ideal functionality for fully secure DKG

Ideal functionality for fully secure DKG (cf. [Wik04])

(For simplicity, assume $|\mathcal{C}|=t$)

$$\mathcal{F}_{\mathsf{DKG}}^{t,n}$$

- ① Receive $\{\sigma_i\}_{i\in\mathcal{C}}$ from the adversary.
- 2 Choose $x \leftarrow \mathbb{Z}_q$ and set $y := g^x$.
- **③** Let f be the polynomial of degree at most t such that f(0) = x and $f(i) = \sigma_i$ for $i \in \mathcal{C}'$. Set $\sigma_i := f(i)$ for $i \in [n] \setminus \mathcal{C}'$.
- ⑤ For $i \in [n]$, send (y, σ_i, Y) to P_i .

Ideal functionality for fully secure DKG (cf. [Wik04])

(For simplicity, assume $|\mathcal{C}| = t$)

$$\mathcal{F}_{\mathsf{DKG}}^{t,n}$$

- ① Receive $\{\sigma_i\}_{i\in\mathcal{C}}$ from the adversary.
- 2 Choose $x \leftarrow \mathbb{Z}_q$ and set $y := g^x$.
- **③** Let f be the polynomial of degree at most t such that f(0) = x and $f(i) = \sigma_i$ for $i \in \mathcal{C}'$. Set $\sigma_i := f(i)$ for $i \in [n] \setminus \mathcal{C}'$.
- \bullet For $i \in [n]$, set $y_i := g^{\sigma_i}$. Let $Y := (y_1, \ldots, y_n)$.
- ⑤ For $i \in [n]$, send (y, σ_i, Y) to P_i .

Impossible to t-securely realize unless t < n/2

Prior work

Lots of DKG protocols, but very few achieving full security

Most round-efficient (explicit) fully secure DKG protocol:

6 rounds [GJKR07]

Based on generic (honest-majority) MPC [GLS15, G+21, D+21]:

- 3 rounds with a CRS; 2 rounds with a CRS + PKI
 - complex / impractical / based on strong cryptographic assumptions

Prior work

Lots of DKG protocols, but very few achieving full security

Most round-efficient (explicit) fully secure DKG protocol:

6 rounds [GJKR07]

Based on generic (honest-majority) MPC [GLS15, G+21, D+21]:

- 3 rounds with a CRS; 2 rounds with a CRS + PKI
 - complex / impractical / based on strong cryptographic assumptions

Lower bounds on round complexity of MPC with guaranteed output delivery do not apply here

Impossibility result

Fully secure DKG is impossible in one round, regardless of prior setup

- Even without robustness
- Even tolerating only a single corrupted party

Impossibility result

A DKG protocol is statistically unbiased if an honest execution yields a (close to) uniform key

Impossibility result

A DKG protocol is statistically unbiased if an honest execution yields a (close to) uniform key

Theorem

There is no 1-round, statistically unbiased DKG protocol that 1-securely realizes $\mathcal{F}_{DKG}^{t,n}$, regardless of setup.

Impossibility result

A DKG protocol is statistically unbiased if an honest execution yields a (close to) uniform key

Theorem

There is no 1-round, statistically unbiased DKG protocol that 1-securely realizes $\mathcal{F}_{DKG}^{t,n}$, regardless of setup.

Main idea of proof:

Some party has the ability to bias the key using rushing

More formally (assume 1-bit key):

- Consider the following attack by P_i biasing to b:
 - Receive messages from other parties; compute key that would be output if it runs the protocol honestly using r;
 If output is h run protocol honestly using r: otherwise sample fresh r
 - If output is b, run protocol honestly using r_i ; otherwise, sample fresh r'_i and run protocol honestly using r'_i

More formally (assume 1-bit key):

- Consider the following attack by P_i biasing to b:
 - Receive messages from other parties; compute key that would be output if it runs the protocol honestly using r_i
 - If output is b, run protocol honestly using r_i ; otherwise, sample fresh r'_i and run protocol honestly using r'_i
- Possible to prove that for some i and b, this strategy noticeably biases the output toward b

Two-round protocols?

Two-round protocols?

Note we assume a rushing adversary . . .

Natural strategy

Protocol

- Parties commit to shares
- Parties decommit their shares

Simulation

- Simulator extracts shares of corrupted parties
- Corrupted parties open to extracted values; (simulated) honest parties force output to desired value

Two-round protocols?

Note we assume a rushing adversary . . .

Natural strategy

Protocol

Parties commit to shares

Parties decommit their shares

Simulation

- Simulator extracts shares of corrupted parties
 - Corrupted parties open to extracted values; (simulated) honest parties force output to desired value

Problem: Some corrupted parties can abort in the second round...

Intuitively, need protocols with the following properties:

• Key is determined at the end of the first round (regardless of which corrupted parties abort in the second round)...

Intuitively, need protocols with the following properties:

- Key is determined at the end of the first round (regardless of which corrupted parties abort in the second round)...
- but the adversary cannot compute they key at the end of the first round (or else impossibility result kicks in)!

Setup	Rounds	Assumptions
CRS + PKI	2	NIZK + PKE
CRS	2	NIZK + MP-NIKE
ROM + 1-round preprocessing	2	(none)

Setup	Rounds	Assumptions
CRS + PKI	2	NIZK + PKE
CRS	2	NIZK + MP-NIKE
ROM +		
1-round preprocessing	2	_
CRS +		
2-round preprocessing	1	NIZK + OWF

Setup	Rounds	Assumptions
CRS + PKI	2	NIZK + PKE
CRS	2	NIZK + MP-NIKE
ROM +		
1-round preprocessing	2	<u> </u>
CRS +		
2-round preprocessing	1	NIZK + OWF

Fully secure* DKG is impossible in one round (regardless of prior setup)

* Impossibility only holds for statistically unbiased protocols; the 1-round protocol we show is only computationally unbiased

Setup	Rounds	Assumptions
CRS + PKI	2	NIZK + PKE
CRS	2	NIZK + MP-NIKE
ROM +		
1-round preprocessing	2	_
CRS +		
2-round preprocessing	1	NIZK + OWF

Complexity polynomial in n

Serves as a good warm-up for other protocols

Starting point:

- Each P_i chooses chooses uniform x_i and uses Shamir secret sharing to share x_i with other parties
- Parties sum shares to obtain shares of $x = \sum_{i} x_{i}$

Starting point:

- Each P_i chooses chooses uniform x_i and uses Shamir secret sharing to share x_i with other parties
- Parties sum shares to obtain shares of $x = \sum_{i} x_{i}$

Problem:

- Corrupted parties can send inconsistent shares!
- Standard techniques for dealing with this require at least 3 rounds

Idea: assume a CRS, and use NIZK proofs to force correct behavior

- Note: useless for proving correctness of values sent by private channels
- Idea: assume a PKI and use public-key encryption instead

Idea: assume a CRS, and use NIZK proofs to force correct behavior

- Note: useless for proving correctness of values sent by private channels
- Idea: assume a PKI and use public-key encryption instead

Problem:

- This does not prevent bias
- Even if parties commit to x_i before sharing it, corrupted parties can still introduce bias by aborting

Idea: can overcome aborts if all parties learn shares of x_i in round 1

• At least the t+1 honest parties will not abort in round 2

Idea: can overcome aborts if all parties learn shares of x_i in round 1

ullet At least the t+1 honest parties will not abort in round 2

For simulation, need the ability for honest parties to equivocate in round 2

Can do using a second round of NIZK proofs

Round 1: Each P_i chooses uniform x_i , broadcasts encrypted shares to all parties, and gives NIZK proof of correct behavior

Let GOOD be parties who gave correct proofs

Round 1: Each P_i chooses uniform x_i , broadcasts encrypted shares to all parties, and gives NIZK proof of correct behavior

Let GOOD be parties who gave correct proofs

Round 2: Each P_i recovers its shares from GOOD parties, adds them to get σ_i , broadcasts $y_i := g^{\sigma_i}$, and gives an NIZK proof of correct behavior

y_i values with incorrect proofs are ignored in the next step

Round 1: Each P_i chooses uniform x_i , broadcasts encrypted shares to all parties, and gives NIZK proof of correct behavior

Let GOOD be parties who gave correct proofs

Round 2: Each P_i recovers its shares from GOOD parties, adds them to get σ_i , broadcasts $y_i := g^{\sigma_i}$, and gives an NIZK proof of correct behavior

y_i values with incorrect proofs are ignored in the next step

Output: Interpolate non-ignored $\{y_i\}$ in the exponent to obtain public key $y = g^x$, where $x = \sum_{i \in GOOD} x_i$

Notes

Key insight: for any $i \in GOOD$, the honest parties have enough information to recover P_i 's contribution in round 2

Notes

Key insight: for any $i \in GOOD$, the honest parties have enough information to recover P_i 's contribution in round 2

Protocol can be instantiated efficiently using Paillier encryption and efficient NIZK proofs

Setup	Rounds	Assumptions
CRS + PKI	2	NIZK + PKE
CRS	2	NIZK + MP-NIKE
ROM +		
1-round preprocessing	2	_
CRS +		
2-round preprocessing	1	NIZK + OWF

Motivation

The PKI was essential in Protocol 1—is it possible to avoid it?

Motivation

The PKI was essential in Protocol 1—is it possible to avoid it?

For simplicity, focus on fully secure coin tossing in the three-party setting

- Can be extended to DKG with a bit of work
- lacksquare Can be extended to *n*-party setting using (t+1)-party NIKE

Intuition: As before, after round 1 the coin should be determined (regardless of what the corrupted party does), but the corrupted party should not be able to compute it

Intuition: As before, after round 1 the coin should be determined (regardless of what the corrupted party does), but the corrupted party should not be able to compute it

Core idea:

- Round 1: Use 2-party NIKE (i.e., Diffie-Hellman key exchange) to define a coin for each pair of parties
- Round 2: Each party reveals the coin for all pairs it is a member of (to prevent cheating and allow equivocation, use NIZK to prove correctness)

Intuition: As before, after round 1 the coin should be determined (regardless of what the corrupted party does), but the corrupted party should not be able to compute it

Core idea:

- Round 1: Use 2-party NIKE (i.e., Diffie-Hellman key exchange) to define a coin for each pair of parties
- Round 2: Each party reveals the coin for all pairs it is a member of (to prevent cheating and allow equivocation, use NIZK to prove correctness)
 - For each pair of parties, at least one is honest!

Intuition: As before, after round 1 the coin should be determined (regardless of what the corrupted party does), but the corrupted party should not be able to compute it

Core idea:

- Round 1: Use 2-party NIKE (i.e., Diffie-Hellman key exchange) to define a coin for each pair of parties
- Round 2: Each party reveals the coin for all pairs it is a member of (to prevent cheating and allow equivocation, use NIZK to prove correctness)
 - For each pair of parties, at least one is honest!
 - There is one pair of parties that is entirely honest

Setup	Rounds	Assumptions
CRS + PKI	2	NIZK + PKE
CRS	2	NIZK + MP-NIKE
$ROM\ +$		
1-round preprocessing	2	<u> </u>
CRS +		
2-round preprocessing	1	NIZK + OWF

Avoids NIZK; very efficient for moderate t, n

Notation

Let $\mathbb{S}_{n-t,n}$ be the collection of all subsets of [n] of size n-t

For $S\in \mathbb{S}_{n-t,n}$, let $Z_S\in \mathbb{Z}_q[X]$ be the degree-t polynomial with $Z_S(0)=1$ and $Z_S(i)=0$ for $i\in [n]\setminus S$

Let $F : \{0,1\}^{\kappa} imes \{0,1\}^{\ell} o \mathbb{Z}_q$ be a pseudorandom function

Notation

Let $\mathbb{S}_{n-t,n}$ be the collection of all subsets of [n] of size n-t

For $S\in \mathbb{S}_{n-t,n}$, let $Z_S\in \mathbb{Z}_q[X]$ be the degree-t polynomial with $Z_S(0)=1$ and $Z_S(i)=0$ for $i\in [n]\setminus S$

Let $F: \{0,1\}^{\kappa} \times \{0,1\}^{\ell} \to \mathbb{Z}_q$ be a pseudorandom function

Assume for all $S \in \mathbb{S}_{n-t,n}$ and all $i \in S$, party P_i holds $k_S \in \{0,1\}^{\kappa}$

Notation

Let $\mathbb{S}_{n-t,n}$ be the collection of all subsets of [n] of size n-t

For $S\in \mathbb{S}_{n-t,n}$, let $Z_S\in \mathbb{Z}_q[X]$ be the degree-t polynomial with $Z_S(0)=1$ and $Z_S(i)=0$ for $i\in [n]\setminus S$

Let $F:\{0,1\}^\kappa imes\{0,1\}^\ell o\mathbb{Z}_q$ be a pseudorandom function

Assume for all $S \in \mathbb{S}_{n-t,n}$ and all $i \in S$, party P_i holds $k_S \in \{0,1\}^{\kappa}$

Given a nonce $N \in \{0,1\}^{\ell}$, each party P_i can compute the share

$$\sigma_i := \sum_{S \in \mathbb{S}_{n-t,n} : i \in S} F_{k_S}(N) \cdot Z_S(i)$$

Notation

Let $\mathbb{S}_{n-t,n}$ be the collection of all subsets of [n] of size n-t

For $S\in \mathbb{S}_{n-t,n}$, let $Z_S\in \mathbb{Z}_q[X]$ be the degree-t polynomial with $Z_S(0)=1$ and $Z_S(i)=0$ for $i\in [n]\setminus S$

Let $F : \{0,1\}^{\kappa} imes \{0,1\}^{\ell} o \mathbb{Z}_q$ be a pseudorandom function

Assume for all $S \in \mathbb{S}_{n-t,n}$ and all $i \in S$, party P_i holds $k_S \in \{0,1\}^{\kappa}$

Given a nonce $N \in \{0,1\}^\ell$, each party P_i can compute the share

$$\sigma_i := \sum_{S \in \mathbb{S}_{n-t,n} : i \in S} F_{k_S}(N) \cdot Z_S(i)$$

This is a (t+1)-out-of-n Shamir secret sharing of

$$x_N = \sum_{S \in \mathbb{S}_{n-t,n}} F_{k_S}(N) \cdot Z_S(0) = \sum_{S \in \mathbb{S}_{n-t,n}} F_{k_S}(N)$$

DKG from PRSS

PRSS implies a one-round (semi-honest) DKG protocol:

- ullet For each set $S\in \mathbb{S}_{n-t,n}$, a designated party broadcasts $\hat{y}_S:=g^{F_{k_S}(N)}$
- Parties compute public key $y = g^{x_N}$ from the $\{\hat{y}_S\}$

DKG from PRSS

PRSS implies a one-round (semi-honest) DKG protocol:

- ullet For each set $S\in \mathbb{S}_{n-t,n}$, a designated party broadcasts $\hat{y}_S:=g^{F_{k_S}(N)}$
- Parties compute public key $y = g^{x_N}$ from the $\{\hat{y}_S\}$

Problems:

- Corrupted party may broadcast incorrect \hat{y}_S
 - Even if multiple parties in S broadcast \hat{y}_S , other parties don't know which value is correct
 - Don't want to rely on NIZK

DKG from PRSS

PRSS implies a one-round (semi-honest) DKG protocol:

- ullet For each set $S\in \mathbb{S}_{n-t,n}$, a designated party broadcasts $\hat{y}_S:=g^{F_{k_S}(N)}$
- Parties compute public key $y = g^{x_N}$ from the $\{\hat{y}_S\}$

Problems:

- Corrupted party may broadcast incorrect \hat{y}_S
 - Even if multiple parties in S broadcast \hat{y}_S , other parties don't know which value is correct
 - Don't want to rely on NIZK
- PRSS assumes a trusted dealer, which we want to avoid

Protocol 3

Round 1: All parties in S broadcast a "deterministic commitment" to \hat{y}_S (namely, $h_s := H(\hat{y}_S)$)

• If there is disagreement, ignore S (equivalent to treating $F_{k_S}(N)=0$, $\hat{y}_S=1=g^0$)

Protocol 3

Round 1: All parties in S broadcast a "deterministic commitment" to \hat{y}_S (namely, $h_s := H(\hat{y}_S)$)

• If there is disagreement, ignore S (equivalent to treating $F_{k_S}(N)=0$, $\hat{y}_S=1=g^0$)

Round 2: All parties in S reveal \hat{y}_S

Incorrect preimages of h_s ignored

Parties compute public key $y = g^{x_N}$ from the $\{\hat{y}_S\}$

Protocol 3

Round 1: All parties in S broadcast a "deterministic commitment" to \hat{y}_S (namely, $h_s := H(\hat{y}_S)$)

• If there is disagreement, ignore S (equivalent to treating $F_{ks}(N)=0$, $\hat{y}_S=1=g^0$)

Round 2: All parties in S reveal \hat{y}_S

Incorrect preimages of h_s ignored

Parties compute public key $y = g^{x_N}$ from the $\{\hat{y}_S\}$

No longer any need for a trusted dealer—a designated party in each set S can simply distribute k_S in a preprocessing phase!

Note: we do not assume correct behavior during preprocessing

A fully secure DKG protocol

Theorem

Let F be a pseudorandom function, and model H as a random oracle. Then for t < n/2 this protocol t-securely realizes $\mathcal{F}_{DKG}^{t,n}$.

A small modification to the protocol achieves adaptive security (assuming secure erasure)

Proof intuition

Useful observations:

- Every $S \in \mathbb{S}_{n-t,n}$ contains at least one honest party
- lacktriangle There exists a set $S_{\mathcal{H}} \in \mathbb{S}_{n-t,n}$ containing only honest parties

Proof intuition

Useful observations:

- Every $S \in \mathbb{S}_{n-t,n}$ contains at least one honest party
- There exists a set $S_{\mathcal{H}} \in \mathbb{S}_{n-t,n}$ containing only honest parties

Robustness/no bias: Fix some $S \in \mathbb{S}_{n-t,n}$.

- If there is disagreement among the $\{h_{i,S}\}_{i\in S}$, then S is excluded
- Otherwise, a preimage \hat{y}_S for the common value h_S will be sent in round 2 (since S contains an honest party)
- Moreover, at most one preimage will be sent (by collision resistance)

Proof intuition

Useful observations:

- Every $S \in \mathbb{S}_{n-t,n}$ contains at least one honest party
- There exists a set $S_{\mathcal{H}} \in \mathbb{S}_{n-t,n}$ containing only honest parties

Robustness/no bias: Fix some $S \in \mathbb{S}_{n-t,n}$.

- If there is disagreement among the $\{h_{i,S}\}_{i\in S}$, then S is excluded
- Otherwise, a preimage \hat{y}_S for the common value h_S will be sent in round 2 (since S contains an honest party)
- Moreover, at most one preimage will be sent (by collision resistance)

Secrecy: $S_{\mathcal{H}}$ is never excluded, so the pseudorandom contribution $k_{S_{\mathcal{H}}}$ is always included in the effective private key

Open questions

Open questions

- Some of our protocols have complexity $O(\binom{n}{t})$ —can this be improved?
- Some of our protocols rely on preprocessing—can this be avoided?
- Is 2-round fully secure DKG in the plain model possible?

Thank you!

Paper available at https://eprint.iacr.org/2023/1094