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Background

Threshold cryptography

Goal: Share a secret key among n parties, such that:

Any t + 1 parties can jointly perform some cryptographic operation

An adversary compromising up to t parties cannot

Two components of a threshold cryptosystem:

1 Key distribution, either via a trusted dealer or a distributed key
generation (DKG) protocol

2 Distributed protocol for signing, decrypting, etc.
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Background

Our results

Focus on fully secure DKG in the dlog setting

Define security via an appropriate ideal functionality

Modular: secure DKG protocols can be composed with arbitrary
(secure) threshold protocols
Cleaner; security guarantees more clear

Study the round complexity of fully secure DKG in the
honest-majority setting (assuming synchrony + broadcast)

Lower bound: No one-round protocols (regardless of setup)

Upper bound: Several round-optimal protocols with tradeoffs in terms
of efficiency, setup, and assumptions
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Background

DKG in the dlog setting

Notation

n is the total number of parties

t is an upper bound on the number of corrupted parties

G is a cyclic group of prime order q, with generator g

(t + 1)-out-of-n Shamir secret sharing

To share s ∈ Zq:

Choose f1, . . . , ft ← Zq; let f (X ) = ft · X t + · · ·+ f1 · X + s

I.e., choose random degree-t polynomial f (X ) subject to f (0) = s

Set ith share σi := f (i) for i = 1, . . . , n

Any t shares reveal nothing about s

Can recover s from any t + 1 shares using polynomial interpolation
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G is a cyclic group of prime order q, with generator g

(t + 1)-out-of-n Shamir secret sharing

Fix C ⊂ [n] with |C| ≤ t. To share s ∈ Zq:

Let adversary specify {σi}i∈C
Choose random degree-t polynomial f (X ) subject to f (0) = s,
f (i) = σi for i ∈ C
Set ith share σi := f (i) for i ∈ [n] \ C
For any C ⊆ C′ with |C′| = t, the {σi}i∈C′ reveal nothing about s
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Background

DKG in the dlog setting

Notation

n is the total number of parties

t is an upper bound on the number of corrupted parties

G is a cyclic group of prime order q, with generator g

Goal

Distributed protocol for n parties to generate

Common public key y = g x

(t + 1)-out-of-n secret sharinga {σi}ni=1 of the private key x

Common commitments {gσi}ni=1 to the parties’ shares

aAssume Shamir secret sharing, but it could also be n-out-of-n additive sharing
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Background

DKG in the dlog setting

Setup

Parties may have some (correlated) state before protocol execution, e.g.,

CRS

PKI

ROM

Correlated randomness

Ideally, state suffices for an unbounded (polynomial) number of executions
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Defining security

“Full security”

Desired security properties:

Correctness: Honest parties should hold a correct sharing of x (and
correct commitments to other parties’ shares)

Secrecy: Corrupted parties should not learn anything about x (beyond
what is implied by y)

Unbiasable: Corrupted parties should be unable to bias y

Robustness (aka guaranteed output delivery): Corrupted parties
should be unable to prevent generation of a key

. . .

Define security via an ideal functionality in a simulation-based framework
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Defining security

Ideal functionalities for (dlog-based) DKG

There are multiple ideal functionalities one could consider for DKG
(see paper for examples and discussion)

Here: (one possible) ideal functionality for fully secure DKG
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Defining security

Ideal functionality for fully secure DKG (cf. [Wik04])

(For simplicity, assume |C| = t)

F t,n
DKG

1 Receive {σi}i∈C from the adversary.

2 Choose x ← Zq and set y := g x .

3 Let f be the polynomial of degree at most t such that f (0) = x
and f (i) = σi for i ∈ C′. Set σi := f (i) for i ∈ [n] \ C′.

4 For i ∈ [n], set yi := gσi . Let Y := (y1, . . . , yn).

5 For i ∈ [n], send (y , σi ,Y ) to Pi .

Impossible to t-securely realize unless t < n/2
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Prior work

Prior work

Lots of DKG protocols, but very few achieving full security

Most round-efficient (explicit) fully secure DKG protocol:

6 rounds [GJKR07]

Based on generic (honest-majority) MPC [GLS15, G+21, D+21]:

3 rounds with a CRS; 2 rounds with a CRS + PKI

complex / impractical / based on strong cryptographic assumptions

Lower bounds on round complexity of MPC with guaranteed output
delivery do not apply here

Jonathan Katz Round-Optimal, Fully Secure DKG 11 / 35



Prior work

Prior work

Lots of DKG protocols, but very few achieving full security

Most round-efficient (explicit) fully secure DKG protocol:

6 rounds [GJKR07]

Based on generic (honest-majority) MPC [GLS15, G+21, D+21]:

3 rounds with a CRS; 2 rounds with a CRS + PKI

complex / impractical / based on strong cryptographic assumptions

Lower bounds on round complexity of MPC with guaranteed output
delivery do not apply here

Jonathan Katz Round-Optimal, Fully Secure DKG 11 / 35



Lower bound

Impossibility result

Fully secure DKG is impossible in one round, regardless of prior setup

Even without robustness

Even tolerating only a single corrupted party
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Lower bound

Impossibility result

A DKG protocol is statistically unbiased if an honest execution yields a
(close to) uniform key

Theorem

There is no 1-round, statistically unbiased DKG protocol that 1-securely
realizes F t,n

DKG, regardless of setup.

Main idea of proof:

Some party has the ability to bias the key using rushing
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Lower bound

More formally (assume 1-bit key):

Consider the following attack by Pi biasing to b:

Receive messages from other parties; compute key that would be
output if it runs the protocol honestly using ri
If output is b, run protocol honestly using ri ; otherwise, sample fresh r ′i
and run protocol honestly using r ′i

Possible to prove that for some i and b, this strategy noticeably
biases the output toward b
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Positive results

Two-round protocols?

Note we assume a rushing adversary . . .

Natural strategy

Protocol Simulation

1 Parties commit to shares 1 Simulator extracts shares of
corrupted parties

2 Parties decommit their shares 2 Corrupted parties open to
extracted values; (simulated)
honest parties force output to
desired value

Problem: Some corrupted parties can abort in the second round. . .
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Positive results

Positive results

Intuitively, need protocols with the following properties:

Key is determined at the end of the first round (regardless of which
corrupted parties abort in the second round). . .

but the adversary cannot compute they key at the end of the first
round (or else impossibility result kicks in)!
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Positive results

Positive results

Setup Rounds Assumptions

CRS + PKI 2 NIZK + PKE

CRS 2 NIZK + MP-NIKE

ROM +
1-round preprocessing 2 (none)
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Positive results

Positive results

Setup Rounds Assumptions

CRS + PKI 2 NIZK + PKE

CRS 2 NIZK + MP-NIKE

ROM +
1-round preprocessing 2 —

CRS +
2-round preprocessing 1 NIZK + OWF

Fully secure∗ DKG is impossible in one round (regardless of prior setup)

∗ Impossibility only holds for statistically unbiased protocols; the 1-round
protocol we show is only computationally unbiased
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Positive results

Positive results

Setup Rounds Assumptions

CRS + PKI 2 NIZK + PKE

CRS 2 NIZK + MP-NIKE

ROM +
1-round preprocessing 2 —

CRS +
2-round preprocessing 1 NIZK + OWF

Complexity polynomial in n

Serves as a good warm-up for other protocols
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Positive results

Protocol 1

Starting point:

Each Pi chooses chooses uniform xi and uses Shamir secret sharing to
share xi with other parties

Parties sum shares to obtain shares of x =
∑

i xi

Problem:

Corrupted parties can send inconsistent shares!

Standard techniques for dealing with this require at least 3 rounds
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Positive results

Protocol 1

Idea: assume a CRS, and use NIZK proofs to force correct behavior

Note: useless for proving correctness of values sent by private channels

Idea: assume a PKI and use public-key encryption instead

Problem:

This does not prevent bias

Even if parties commit to xi before sharing it, corrupted parties can
still introduce bias by aborting
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Positive results

Protocol 1

Idea: can overcome aborts if all parties learn shares of xi in round 1

At least the t + 1 honest parties will not abort in round 2

For simulation, need the ability for honest parties to equivocate in round 2

Can do using a second round of NIZK proofs
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Positive results

Protocol 1

Round 1: Each Pi chooses uniform xi , broadcasts encrypted shares to all
parties, and gives NIZK proof of correct behavior

Let GOOD be parties who gave correct proofs

Round 2: Each Pi recovers its shares from GOOD parties, adds them to
get σi , broadcasts yi := gσi , and gives an NIZK proof of correct behavior

yi values with incorrect proofs are ignored in the next step

Output: Interpolate non-ignored {yi} in the exponent to obtain public key
y = g x , where x =

∑
i∈GOOD xi
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Positive results

Notes

Key insight: for any i ∈ GOOD, the honest parties have enough
information to recover Pi ’s contribution in round 2

Protocol can be instantiated efficiently using Paillier encryption and
efficient NIZK proofs
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Positive results

Protocol 2

Intuition: As before, after round 1 the coin should be determined
(regardless of what the corrupted party does), but the corrupted party
should not be able to compute it

Core idea:

Round 1: Use 2-party NIKE (i.e., Diffie-Hellman key exchange) to
define a coin for each pair of parties

Round 2: Each party reveals the coin for all pairs it is a member of
(to prevent cheating and allow equivocation, use NIZK to prove
correctness)

For each pair of parties, at least one is honest!
There is one pair of parties that is entirely honest
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Positive results

Positive results

Setup Rounds Assumptions

CRS + PKI 2 NIZK + PKE

CRS 2 NIZK + MP-NIKE

ROM +
1-round preprocessing 2 —

CRS +
2-round preprocessing 1 NIZK + OWF

Avoids NIZK; very efficient for moderate t, n
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Positive results

Background: Pseudorandom secret sharing [CDI05]

Notation

Let Sn−t,n be the collection of all subsets of [n] of size n − t

For S ∈ Sn−t,n, let ZS ∈ Zq[X ] be the degree-t polynomial with ZS(0) = 1
and ZS(i) = 0 for i ∈ [n] \ S

Let F : {0, 1}κ × {0, 1}ℓ → Zq be a pseudorandom function

Assume for all S ∈ Sn−t,n and all i ∈ S , party Pi holds kS ∈ {0, 1}κ

Given a nonce N ∈ {0, 1}ℓ, each party Pi can compute the share

σi :=
∑

S∈Sn−t,n : i∈S FkS (N) · ZS(i)

This is a (t + 1)-out-of-n Shamir secret sharing of

xN =
∑

S∈Sn−t,n
FkS (N) · ZS(0) =

∑
S∈Sn−t,n

FkS (N)
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Positive results

DKG from PRSS

PRSS implies a one-round (semi-honest) DKG protocol:

For each set S ∈ Sn−t,n, a designated party broadcasts ŷS := gFkS
(N)

Parties compute public key y = g xN from the {ŷS}

Problems:

Corrupted party may broadcast incorrect ŷS
Even if multiple parties in S broadcast ŷS , other parties don’t know
which value is correct
Don’t want to rely on NIZK

PRSS assumes a trusted dealer, which we want to avoid
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Problems:

Corrupted party may broadcast incorrect ŷS
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Positive results

Protocol 3

Round 1: All parties in S broadcast a “deterministic commitment” to ŷS
(namely, hs := H(ŷS))

If there is disagreement, ignore S
(equivalent to treating FkS (N) = 0, ŷS = 1 = g0)

Round 2: All parties in S reveal ŷS

Incorrect preimages of hs ignored

Parties compute public key y = g xN from the {ŷS}

No longer any need for a trusted dealer—a designated party in each set S
can simply distribute kS in a preprocessing phase!

Note: we do not assume correct behavior during preprocessing
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Positive results

A fully secure DKG protocol

Theorem

Let F be a pseudorandom function, and model H as a random oracle.
Then for t < n/2 this protocol t-securely realizes F t,n

DKG.

A small modification to the protocol achieves adaptive security (assuming
secure erasure)
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Positive results

Proof intuition

Useful observations:

Every S ∈ Sn−t,n contains at least one honest party

There exists a set SH ∈ Sn−t,n containing only honest parties

Robustness/no bias: Fix some S ∈ Sn−t,n.

If there is disagreement among the {hi ,S}i∈S , then S is excluded

Otherwise, a preimage ŷS for the common value hS will be sent in
round 2 (since S contains an honest party)

Moreover, at most one preimage will be sent (by collision resistance)

Secrecy: SH is never excluded, so the pseudorandom contribution kSH is
always included in the effective private key
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Conclusions

Open questions

Some of our protocols have complexity O(
(n
t

)
)—can this be

improved?

Some of our protocols rely on preprocessing—can this be avoided?

Is 2-round fully secure DKG in the plain model possible?
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Thank you!

Paper available at https://eprint.iacr.org/2023/1094

Jonathan Katz Round-Optimal, Fully Secure DKG 35 / 35


	Background
	Defining security
	Prior work
	Lower bound
	Positive results
	Conclusions
	

