m Sty SPy<ioDe FWF &y,

Flexible Modes for Arithmetization-Oriented
Compression Functions

ALPSY 2025, January 25-29, Obergurgl

Stefano Trevisani

TU Wien Security & Privacy Group

Verifiable Computation,
Blockchains, and ZK-SNARKSs

Verifiable Computation and ZK-SNARKSs

Verifiable Computation for Trusted Cloud/P2P:

Verifiable Computation and ZK-SNARKSs

Verifiable Computation for Trusted Cloud/P2P:

. : computes some function F(pub, sec).

Verifiable Computation and ZK-SNARKSs

Verifiable Computation for Trusted Cloud/P2P:

. : computes some function F(pub, sec).

= Client: verifies the correctness of the output.

Verifiable Computation and ZK-SNARKSs

Verifiable Computation for Trusted Cloud/P2P:

. : computes some function F(pub, sec).

= Client: verifies the correctness of the output.
= ZK-SNARKsS:
o <— , Client <= Verifier

Verifiable Computation and ZK-SNARKSs

Verifiable Computation for Trusted Cloud/P2P:

. : computes some function F(pub, sec).

= Client: verifies the correctness of the output.
= ZK-SNARKsS:
o <— , Client <= Verifier

= Virtual Machines, Blockchains, Recursive SNARKs...

RISC

¢ polygon ZERO
wivs @

Hash functions and ZK-SNARKSs

Hash functions play a central role in SNARKSs:

Hash functions and ZK-SNARKSs

Hash functions play a central role in SNARKSs:

= Blockchain rollups use Merkle Trees (MT)...

Hash functions and ZK-SNARKSs

Hash functions play a central role in SNARKSs:

= Blockchain rollups use Merkle Trees (MT)...
= _.And so do recursive SNARKs.

Hash functions and ZK-SNARKSs

Hash functions play a central role in SNARKSs:

= Blockchain rollups use Merkle Trees (MT)...
= _And so do recursive SNARKs.
= _And the FRI-based PCS used in STARK as well.

Hash functions and ZK-SNARKSs

Hash functions play a central role in SNARKSs:

= Blockchain rollups use Merkle Trees (MT)...

= ..And so do recursive SNARKSs.

= ..And the FRI-based PCS used in STARK as well.

= Fiat-Shamir transform for non-interactive arguments.

Hash functions and ZK-SNARKSs

Hash functions play a central role in SNARKSs:

= Blockchain rollups use Merkle Trees (MT)...

= ..And so do recursive SNARKSs.

= ..And the FRI-based PCS used in STARK as well.

= Fiat-Shamir transform for non-interactive arguments.

—— N W Hashchain
EEE RSIOP N Merkle Tree
DT

@
)
o ¢ o Fo|

Figure 1: Left: binary Merkle Tree. Right: Fractal [12] verifier.

Arithmetization-Oriented Hash Functions

Cost of hashing in ZK-SNARK:

Arithmetization-Oriented Hash Functions

Cost of hashing in ZK-SNARK:

Arithmetization-Oriented Hash Functions

Cost of hashing in ZK-SNARK:

= Verification is fast (often constant time).

Arithmetization-Oriented Hash Functions

Cost of hashing in ZK-SNARK:

= Verification is fast (often constant time).
] depends on Multiplicative Complexity:
o Circuit over a large prime field IF, (log(p) € {64,128, 256}).

Arithmetization-Oriented Hash Functions

Cost of hashing in ZK-SNARK:

= Verification is fast (often constant time).
] depends on Multiplicative Complexity:

o Circuit over a large prime field IF, (log(p) € {64,128, 256}).
= Bit-oriented hash functions = high MC.

¢ Bitwise operations are expensive to emulate.

Arithmetization-Oriented Hash Functions

Cost of hashing in ZK-SNARK:

= Verification is fast (often constant time).
] depends on Multiplicative Complexity:

o Circuit over a large prime field IF, (log(p) € {64,128, 256}).
Bit-oriented hash functions = high MC.

¢ Bitwise operations are expensive to emulate.

Arithmetization-oriented hash functions = low MC.

¢ defined directly over F,.

Arithmetization-Oriented Hash Functions

Cost of hashing in ZK-SNARK:

= Verification is fast (often constant time).
] depends on Multiplicative Complexity:

o Circuit over a large prime field IF, (log(p) € {64,128, 256}).
Bit-oriented hash functions = high MC.

¢ Bitwise operations are expensive to emulate.

Arithmetization-oriented hash functions = low MC.

¢ defined directly over F,.

Native (SW/HW) performance is still important!

Flexible AO Compression Modes

Joint work E. Andreeva, R. Bhattacharyya, A. Roy

Compositional Paradigms

Hash functions from provably secure compositional paradigms:

Compositional Paradigms

Hash functions from provably secure compositional paradigms:

= Permutation-based Sponge mode [6]:

Compositional Paradigms

Hash functions from provably secure compositional paradigms:

= Permutation-based Sponge mode [6]:
& Provably secure over Fy and F, [7, 22]).

Compositional Paradigms

Hash functions from provably secure compositional paradigms:

= Permutation-based Sponge mode [6]:
& Provably secure over Fy and F, [7, 22]).
2t Cannot use the key input to compress data.

Compositional Paradigms

Hash functions from provably secure compositional paradigms:

= Permutation-based Sponge mode [6]:
& Provably secure over Fy and F, [7, 22]).
2t Cannot use the key input to compress data.

= Blockcipher-based PGV modes [25]:

Compositional Paradigms

Hash functions from provably secure compositional paradigms:

= Permutation-based Sponge mode [6]:
& Provably secure over Fy and F, [7, 22]).
2t Cannot use the key input to compress data.

= Blockcipher-based PGV modes [25]:

.

¥ Provably secure over Fy [9].

Compositional Paradigms

Hash functions from provably secure compositional paradigms:

= Permutation-based Sponge mode [6]:
& Provably secure over Fy and F, [7, 22]).
2t Cannot use the key input to compress data.

= Blockcipher-based PGV modes [25]:

¥ Provably secure over Fy [9].
& Exploits both key and plaintext inputs for compression.

m m hy
r elements mg
N O I M |
V
m -~ F —H-—h
c elements
Sponge Davies-Meyer

Dealing with Input Length

Two kinds of hash modes:

Dealing with Input Length

Two kinds of hash modes:

= (Variable Input Length) Hash functions, inputs from Fy:

Dealing with Input Length

Two kinds of hash modes:

= (Variable Input Length) Hash functions, inputs from Fy:

& Flexible input size.

Dealing with Input Length

Two kinds of hash modes:

= (Variable Input Length) Hash functions, inputs from Fy:

& Flexible input size.
2 Require a padding scheme, suboptimal compression rate.

Dealing with Input Length

Two kinds of hash modes:

= (Variable Input Length) Hash functions, inputs from IF:
& Flexible input size.
2 Require a padding scheme, suboptimal compression rate.
2 Wider attack surface (e.g. length extension attacks).

Dealing with Input Length

Two kinds of hash modes:

= (Variable Input Length) Hash functions, inputs from Fy:

& Flexible input size.
2 Require a padding scheme, suboptimal compression rate.
2 Wider attack surface (e.g. length extension attacks).

= Compression functions, inputs from F}:

Dealing with Input Length

Two kinds of hash modes:

= (Variable Input Length) Hash functions, inputs from Fy:

& Flexible input size.
2 Require a padding scheme, suboptimal compression rate.
2 Wider attack surface (e.g. length extension attacks).

= Compression functions, inputs from F}:

& High compression rate.

Dealing with Input Length

Two kinds of hash modes:

= (Variable Input Length) Hash functions, inputs from IF:
& Flexible input size.
2 Require a padding scheme, suboptimal compression rate.
2 Wider attack surface (e.g. length extension attacks).

= Compression functions, inputs from F}:

& High compression rate.
2 ‘Rigid’ input size, usually rely on a small primitive.

Dealing with Input Length

Two kinds of hash modes:

= (Variable Input Length) Hash functions, inputs from Fy:

& Flexible input size.
2 Require a padding scheme, suboptimal compression rate.
2 Wider attack surface (e.g. length extension attacks).

= Compression functions, inputs from F}:
& High compression rate.

2 ‘Rigid’ input size, usually rely on a small primitive.

? Can we have the best of both?

Dealing with Input Length

Two kinds of hash modes:

= (Variable Input Length) Hash functions, inputs from Fy:

& Flexible input size.
2 Require a padding scheme, suboptimal compression rate.
2 Wider attack surface (e.g. length extension attacks).

= Compression functions, inputs from F}:

& High compression rate.

2 ‘Rigid’ input size, usually rely on a small primitive.
? Can we have the best of both?

Exploit flexibility of AO design strategies!

Dealing with Input Length

Two kinds of hash modes:

= (Variable Input Length) Hash functions, inputs from Fy:

& Flexible input size.
2 Require a padding scheme, suboptimal compression rate.
2 Wider attack surface (e.g. length extension attacks).

= Compression functions, inputs from F}:

& High compression rate.

2 ‘Rigid’ input size, usually rely on a small primitive.
? Can we have the best of both?

Exploit flexibility of AO design strategies!

The PGV-ELC modes

We introduced the PGV-ELC family of modes:

The PGV-ELC modes

We introduced the PGV-ELC family of modes:
= Published at IEEE CSF 2024 [2].

The PGV-ELC modes

We introduced the PGV-ELC family of modes:

= Published at IEEE CSF 2024 [2].
= Based on a block cipher E: [, x F) — Fp.

The PGV-ELC modes

We introduced the PGV-ELC family of modes:

= Published at IEEE CSF 2024 [2].
= Based on a block cipher E: [, x F) — Fp.
= CK,P,F,R,E maps X H X1 € Fg/+n/ to h e Fé, with ¢ < n'.

The PGV-ELC modes

We introduced the PGV-ELC family of modes:

= Published at IEEE CSF 2024 [2].

= Based on a block cipher E: [, x F) — Fp.

» Ck,p,F,R.E Maps Xy || x| € Fg*”/ to h € F¢, with £ < n'.
= Expansion matrices K € IF;;X"'/ and P € IE‘I’;X”/.

The PGV-ELC modes

We introduced the PGV-ELC family of modes:

= Published at IEEE CSF 2024 [2].

= Based on a block cipher E: [, x F) — Fp.

» Ck,p,F,R.E Maps Xy || x| € Fg*”/ to h € F¢, with £ < n'.
= Expansion matrices K € IF;;X"'/ and P € IE‘I’;X”/.

= Compression matrices F € Fff”/ and R € Fff”.

The PGV-ELC modes

We introduced the PGV-ELC family of modes:

= Published at IEEE CSF 2024 [2].

= Based on a block cipher E: [, x F) — Fp.

» Ck,p,F,R.E Maps Xy || x| € Fg*”/ to h € F¢, with £ < n'.
= Expansion matrices K € IF;;X"'/ and P € IE‘I’;X”/.

= Compression matrices F € Fff”/ and R € Fff”.

The ELC-P modes

We also introduced the ELC-P family of modes [to appear]:

The ELC-P modes

We also introduced the ELC-P family of modes [to appear]:

» Based on a permutation 7: F' — F".

The ELC-P modes

We also introduced the ELC-P family of modes [to appear]:

» Based on a permutation 7: F' — F".

= CLFRx maps x € FY to h e FS, with £ < m'.

The ELC-P modes

We also introduced the ELC-P family of modes [to appear]:

» Based on a permutation 7: F' — F".

= CLFRx maps x € FY to h e FS, with £ < m'.

= Expansion matrix L € Fg’xm/.

The ELC-P modes

We also introduced the ELC-P family of modes [to appear]:

» Based on a permutation 7: F' — F".

= CLFRx maps x € FY to h e FS, with £ < m'.

p!
= Expansion matrix L € Fg’xm/.

Compression matrices F € IFf'JX’"/ and R e F <.

The ELC-P modes

We also introduced the ELC-P family of modes [to appear]:

» Based on a permutation 7: F' — F".

* CLFRx Maps x € IF","/ to h e }Ffa with £ < m'.

= Expansion matrix L € Fg’xm'.

= Compression matrices F € IFf'JX’"/ and R e F <.

= Includes existing modes like Jive [11] or Trunc [17, 19].

The ELC-P modes

We also introduced the ELC-P family of modes [to appear]:

» Based on a permutation 7: F' — F".

* CLFRx Maps x € IF","/ to h e }Ffa with £ < m'.

= Expansion matrix L € Fg’xm'.

= Compression matrices F € IFf'JX’"/ and R e F <.

= Includes existing modes like Jive [11] or Trunc [17, 19].

x{ o|l]|af € ™ T }h
s —

Security Results

How to Prove Your Security

In order to formally prove that our modes are secure, we need:

How to Prove Your Security

In order to formally prove that our modes are secure, we need:

= A model for the underlying primitive(s) P:
o Ideal cipher/permutation E < Block (F%,F7), m £ Perm (Fm).

How to Prove Your Security

In order to formally prove that our modes are secure, we need:

= A model for the underlying primitive(s) P:
o Ideal cipher/permutation E < Block (F%,F7), m £ Perm (Fm).
= An adversary:

¢ Query-bounded algorithm 4 with oracle access to P.

How to Prove Your Security

In order to formally prove that our modes are secure, we need:

= A model for the underlying primitive(s) P:

o Ideal cipher/permutation E < Block (F%,F7), m £ Perm (Fm).
= An adversary:

¢ Query-bounded algorithm 4 with oracle access to P.
= A security notion:

o Collision/preimage resistance, indifferentiability, ...

How to Prove Your Security

In order to formally prove that our modes are secure, we need:

= A model for the underlying primitive(s) P:

o Ideal cipher/permutation E < Block (F%,F7), m £ Perm (Fm).
= An adversary:

¢ Query-bounded algorithm 4 with oracle access to P.
= A security notion:

o Collision/preimage resistance, indifferentiability, ...
Formalized by an advantage function:

. Adv\vovl‘]o'\(q) _ maXA{AdVX(')VI']O'\ (.A, q)}

mode mode

How to Prove Your Security

In order to formally prove that our modes are secure, we need:

= A model for the underlying primitive(s) P:

o Ideal cipher/permutation E < Block (F%,F7), m £ Perm (Fm).
= An adversary:

¢ Query-bounded algorithm 4 with oracle access to P.
= A security notion:

o Collision/preimage resistance, indifferentiability, ...
Formalized by an advantage function:

. Adv\vovl‘]o'\(q) _ maXA{AdVX(')VI']O'\ (.A, q)}

mode mode

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advi° (A, q) = Pr[(x, x') EAP() i x#£ X NCp(x) =Cp (x’)]

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advi° (A, q) = Pr[(x, x') EAP() i x#£ X NCp(x) =Cp (x’)]

For PGV-ELC: Ce(x,y) = R - Exy(Px) + Fx:

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advi° (A, q) = Pr[(x, x') EAP() i x#£ X NCp(x) =Cp (x’)]

For PGV-ELC: Ce(x,y) = R - Exy(Px) + Fx:

1. Consider R, F right-invertible, K, P left-invertible.

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advi° (A, q) = Pr[(x, x') EAP() i x#£ X NCp(x) =Cp (x’)]

For PGV-ELC: Ce(x,y) = R - Exy(Px) + Fx:

1. Consider R, F right-invertible, K, P left-invertible.

2. Matrices induce partitions over the row/column span.

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advi° (A, q) = Pr[(x, x') EAP() i x#£ X NCp(x) =Cp (x’)]

For PGV-ELC: Ce(x,y) = R - Exy(Px) + Fx:

1. Consider R, F right-invertible, K, P left-invertible.
2. Matrices induce partitions over the row/column span.

3. Feed-forward addition guarantees one-wayness.

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advi° (A, q) = Pr[(x, x') EAP() i x#£ X NCp(x) =Cp (x’)]

For PGV-ELC: Ce(x,y) = R - Exy(Px) + Fx:

1. Consider R, F right-invertible, K, P left-invertible.
2. Matrices induce partitions over the row/column span.
3. Feed-forward addition guarantees one-wayness.
4

. A can adaptively exploit partition imbalances.

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advi° (A, q) = Pr[(x, x') EAP() i x#£ X NCp(x) =Cp (x’)]

For PGV-ELC: Ce(x,y) = R - Exy(Px) + Fx:

. Consider R, F right-invertible, K, P left-invertible.

. Matrices induce partitions over the row/column span.

1

2

3. Feed-forward addition guarantees one-wayness.
4. A can adaptively exploit partition imbalances.
5

. Still, we obtain Adv;""(q) < % (=~ birthday attack).

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advi° (A, q) = Pr[(x, x') E AP x#£X NCp(x) =Cp (x’)]

For PGV-ELC: Ce(x,y) = R - Exy(Px) + Fx:

. Consider R, F right-invertible, K, P left-invertible.

. Matrices induce partitions over the row/column span.

1

2

3. Feed-forward addition guarantees one-wayness.
4. A can adaptively exploit partition imbalances.
5

. Still, we obtain Adv;""(q) < % (=~ birthday attack).

Similar reasoning for ELC-P modes, preimage resistance.

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advi° (A, q) = Pr[(x, x') E AP x#£X NCp(x) =Cp (x’)]

For PGV-ELC: Ce(x,y) = R - Exy(Px) + Fx:

. Consider R, F right-invertible, K, P left-invertible.

. Matrices induce partitions over the row/column span.

1

2

3. Feed-forward addition guarantees one-wayness.
4. A can adaptively exploit partition imbalances.
5

. Still, we obtain Adv;""(q) < % (=~ birthday attack).

Similar reasoning for ELC-P modes, preimage resistance.

How to choose your matrix?

Consider ELC-P: C.(x,y) = R - n(Lx) + Fx:

10

How to choose your matrix?

Consider ELC-P: C.(x,y) = R - 7(Lx) + Fx:

= How to choose the matrix R?

10

How to choose your matrix?

Consider ELC-P: C.(x,y) = R - 7(Lx) + Fx:

= How to choose the matrix R?

& Any pseudo-invertible matrix will do.

10

How to choose your matrix?

Consider ELC-P: C.(x,y) = R - 7(Lx) + Fx:

= How to choose the matrix R?

& Any pseudo-invertible matrix will do.
¢ What if we weaken our model?

10

How to choose your matrix?

Consider ELC-P: C.(x,y) = R - 7(Lx) + Fx:

= How to choose the matrix R?

& Any pseudo-invertible matrix will do.
¢ What if we weaken our model?

= A has access to an oracle Oy, with £ < t < m:

10

How to choose your matrix?

Consider ELC-P: C.(x,y) = R - 7(Lx) + Fx:

= How to choose the matrix R?

& Any pseudo-invertible matrix will do.
¢ What if we weaken our model?

= A has access to an oracle Oy, with £ < t < m:
o Tr(ﬂ(@t(v €]F;))) =v

10

How to choose your matrix?

Consider ELC-P: C.(x,y) = R - 7(Lx) + Fx:

= How to choose the matrix R?

& Any pseudo-invertible matrix will do.
¢ What if we weaken our model?

= A has access to an oracle Oy, with £ < t < m:
o Tr(ﬂ(@t(v €]F;))) =v

= If R is pseudo-identity (i.e. truncation), easy to get collisions!

10

How to choose your matrix?

Consider ELC-P: C.(x,y) = R - 7(Lx) + Fx:

= How to choose the matrix R?

& Any pseudo-invertible matrix will do.
¢ What if we weaken our model?

= A has access to an oracle Oy, with £ < t < m:
o Tr(ﬂ(@t(v €]F;))) =v

= If R is pseudo-identity (i.e. truncation), easy to get collisions!
¢ Choose R MDS.

10

How to choose your matrix?

Consider ELC-P: C.(x,y) = R - 7(Lx) + Fx:

= How to choose the matrix R?

& Any pseudo-invertible matrix will do.
¢ What if we weaken our model?

= A has access to an oracle Oy, with £ < t < m:
o Tr(ﬂ(@t(v €]F;))) =v

= If R is pseudo-identity (i.e. truncation), easy to get collisions!
¢ Choose R MDS.

Related: AES last round missing MixColumns [13].

10

How to choose your matrix?

Consider ELC-P: C.(x,y) = R - 7(Lx) + Fx:

= How to choose the matrix R?

& Any pseudo-invertible matrix will do.
¢ What if we weaken our model?

= A has access to an oracle Oy, with £ < t < m:
o Tr(ﬂ(@t(v €]F;))) =v

= If R is pseudo-identity (i.e. truncation), easy to get collisions!
¢ Choose R MDS.

Related: AES last round missing MixColumns [13].

10

Random Oracle Indifferentiability

Sometimes collision/preimage resistance is not enough:

11

Random Oracle Indifferentiability

Sometimes collision/preimage resistance is not enough:

= Indifferentiability ~ compositional indistinguishability.

11

Random Oracle Indifferentiability

Sometimes collision/preimage resistance is not enough:

= Indifferentiability ~ compositional indistinguishability.

= (FIL) Random Oracle H ¢ Func(F7, F%).

11

Random Oracle Indifferentiability

Sometimes collision/preimage resistance is not enough:

= Indifferentiability ~ compositional indistinguishability.
= (FIL) Random Oracle H ¢ Func(F7, F%).

= Simulator S must mimic the primitive P.

¢ Can query H, should be (query) efficient.

11

Random Oracle Indifferentiability

Sometimes collision/preimage resistance is not enough:

= Indifferentiability ~ compositional indistinguishability.
= (FIL) Random Oracle H ¢ Func(F7, F%).
= Simulator S must mimic the primitive P.

¢ Can query H, should be (query) efficient.
Differentiator D must tell (C,P) apart from (H,S).

11

Random Oracle Indifferentiability

Sometimes collision/preimage resistance is not enough:

= Indifferentiability ~ compositional indistinguishability.
= (FIL) Random Oracle H ¢ Func(F7, F%).
= Simulator S must mimic the primitive P.
¢ Can query H, should be (query) efficient.
= Differentiator D must tell (C,P) apart from (H,S).

11

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: C(x,y) = R - w(Lx) + Fx:

12

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: C(x,y) = R - w(Lx) + Fx:

1. Again, R, F right-invertible, L left-invertible.

12

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: C(x,y) = R - w(Lx) + Fx:

1. Again, R, F right-invertible, L left-invertible.
2. We can devise S such that:

12

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: C(x,y) = R - w(Lx) + Fx:

1. Again, R, F right-invertible, L left-invertible.
2. We can devise S such that:

o Keeps track of queries coming from D.

12

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: C(x,y) = R - w(Lx) + Fx:

1. Again, R, F right-invertible, L left-invertible.
2. We can devise S such that:

o Keeps track of queries coming from D.
© Makes (at most) one H-query per call.

12

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: C(x,y) = R - w(Lx) + Fx:

1. Again, R, F right-invertible, L left-invertible.
2. We can devise S such that:

o Keeps track of queries coming from D.
© Makes (at most) one H-query per call.

3. D can differentiate S from 7 via backward queries:

12

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: C(x,y) = R - w(Lx) + Fx:

1. Again, R, F right-invertible, L left-invertible.
2. We can devise S such that:

o Keeps track of queries coming from D.
© Makes (at most) one H-query per call.

3. D can differentiate S from 7 via backward queries:

o p™ — p™ of them are preimage-free (L(LTy) # y).

12

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: C(x,y) = R - w(Lx) + Fx:

1. Again, R, F right-invertible, L left-invertible.
2. We can devise S such that:

o Keeps track of queries coming from D.
© Makes (at most) one H-query per call.

3. D can differentiate S from 7 via backward queries:
o p™ — p™ of them are preimage-free (L(LTy) # y).
4. We can bound Adv;" (q) < —7

= pm=m'—q

& @ is the sum of primitive and construction queries.

12

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: C(x,y) = R - w(Lx) + Fx:

1. Again, R, F right-invertible, L left-invertible.
2. We can devise S such that:

o Keeps track of queries coming from D.
© Makes (at most) one H-query per call.

3. D can differentiate S from 7 via backward queries:
o p™ — p™ of them are preimage-free (L(LTy) # y).
4. We can bound Adv;" (q) < —7

= pm=m'—q

& @ is the sum of primitive and construction queries.

| For PGV-ELC: Advg"(q) < =0—.

12

Modes security comparison

Mode Primitive CcoL PRE DIF
ELC-P Perm(m) ¢*/p" q/p" q/pm
PGV-ELC Block(k,n) ¢*/p* q/p* q/p"™"

Spongel Perm(m) q2/pmin{£,mfm’} q/pmin{l,mfm’} q2/pm7m’

IDIF advantage drops to q/p"'/*"7 for single-iteration.

13

Modes security comparison

Mode Primitive CcoL PRE DIF
ELC-P Perm(m) ¢*/p" q/p" q/pm
PGV-ELC Block(k,n) ¢*/p* q/p* q/p"™"

Spongel Perm(m) q2/pmin{£,mfm’} q/pmin{l,mfm’} q2/pm7m’

Assuming m’ = n' + k' and m = n + &:

IDIF advantage drops to q/p"'/*"7 for single-iteration.

13

Modes security comparison

Mode Primitive CcoL PRE DIF
ELC-P Perm(m) ¢*/p" q/p" q/pm
PGV-ELC Block(k,n) ¢*/p* q/p* q/p"™"

Spongel Perm(m) q2/pmin{£,mfm’} q/pmin{l,mfm’} q2/pm7m’

Assuming m’ = n' + k' and m = n + &:

= ELC-P and PGV-LC have optimal COL and PRE resistance.

IDIF advantage drops to q/p"'/*"7 for single-iteration.

13

Modes security comparison

Mode Primitive CcoL PRE DIF
ELC-P Perm(m) ¢*/p" q/p" q/pm
PGV-ELC Block(k,n) ¢*/p* q/p* q/p"™"

Spongel Perm(m) q2/pmin{£,mfm’} q/pmin{l,mfm’} q2/pm7m’

Assuming m’ = n' + k' and m = n + &:

= ELC-P and PGV-LC have optimal COL and PRE resistance.

= COL and PRE resistance of Sponge are sub-optimal.

IDIF advantage drops to q/p"'/*"7 for single-iteration.

13

Modes security comparison

Mode Primitive CcoL PRE DIF
ELC-P Perm(m) ¢*/p" q/p" q/pm
PGV-ELC Block(k,n) ¢*/p* q/p* q/p"™"

Spongel Perm(m) q2/pmin{£,mfm’} q/pmin{l,mfm’} q2/pm7m’

Assuming m’ = n' + k' and m = n + &:

= ELC-P and PGV-LC have optimal COL and PRE resistance.
= COL and PRE resistance of Sponge are sub-optimal.

= ELC-P indifferentiability is better than PGV-ELC.

IDIF advantage drops to q/p"'/*"7 for single-iteration.

13

Modes security comparison

Mode Primitive CcoL PRE DIF
ELC-P Perm(m) ¢*/p" q/p" q/pm
PGV-ELC Block(k,n) ¢*/p* q/p* q/p"™"

Spongel Perm(m) q2/pmin{£,mfm’} q/pmin{l,mfm’} q2/pm7m’

Assuming m’ = n' + k' and m = n + &:

= ELC-P and PGV-LC have optimal COL and PRE resistance.
= COL and PRE resistance of Sponge are sub-optimal.

= ELC-P indifferentiability is better than PGV-ELC.

IDIF advantage drops to q/p"'/*"7 for single-iteration.

13

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

= MARVELIlous, HADES, Anemoi, GTDS, .. [3, 20, 11, 26]

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

= MARVELIlous, HADES, Anemoi, GTDS, .. [3, 20, 11, 26]

= Arbitrarily sized block ciphers/permutations.

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

= MARVELIlous, HADES, Anemoi, GTDS, .. [3, 20, 11, 26]
= Arbitrarily sized block ciphers/permutations.

= Secure parametrizations established via cryptanalysis.

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

= MARVELIlous, HADES, Anemoi, GTDS, .. [3, 20, 11, 26]
= Arbitrarily sized block ciphers/permutations.
= Secure parametrizations established via cryptanalysis.

= Large instances more efficient than black-box combinations.

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

= MARVELIlous, HADES, Anemoi, GTDS, .. [3, 20, 11, 26]
= Arbitrarily sized block ciphers/permutations.

= Secure parametrizations established via cryptanalysis.

= Large instances more efficient than black-box combinations.

I Concrete instances subject to tailored attacks [4, 23].

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

= MARVELIlous, HADES, Anemoi, GTDS, .. [3, 20, 11, 26]
= Arbitrarily sized block ciphers/permutations.

= Secure parametrizations established via cryptanalysis.

= Large instances more efficient than black-box combinations.

I Concrete instances subject to tailored attacks [4, 23].

How to best use PGV-ELC/ELC-P modes?

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

= MARVELIlous, HADES, Anemoi, GTDS, .. [3, 20, 11, 26]
= Arbitrarily sized block ciphers/permutations.

= Secure parametrizations established via cryptanalysis.

= Large instances more efficient than black-box combinations.

I Concrete instances subject to tailored attacks [4, 23].
How to best use PGV-ELC/ELC-P modes?

= High-arity/mixed-arity Merkle-Trees.

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

= MARVELIlous, HADES, Anemoi, GTDS, .. [3, 20, 11, 26]
= Arbitrarily sized block ciphers/permutations.

= Secure parametrizations established via cryptanalysis.

= Large instances more efficient than black-box combinations.

I Concrete instances subject to tailored attacks [4, 23].
How to best use PGV-ELC/ELC-P modes?

= High-arity/mixed-arity Merkle-Trees.

= Fiat-Shamir with known (reasonably short) message length.

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

= MARVELIlous, HADES, Anemoi, GTDS, .. [3, 20, 11, 26]
= Arbitrarily sized block ciphers/permutations.

= Secure parametrizations established via cryptanalysis.

= Large instances more efficient than black-box combinations.

I Concrete instances subject to tailored attacks [4, 23].
How to best use PGV-ELC/ELC-P modes?

= High-arity/mixed-arity Merkle-Trees.
= Fiat-Shamir with known (reasonably short) message length.

| Area cost, especially for HW implementations.

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

= MARVELIlous, HADES, Anemoi, GTDS, .. [3, 20, 11, 26]
= Arbitrarily sized block ciphers/permutations.

= Secure parametrizations established via cryptanalysis.

= Large instances more efficient than black-box combinations.

I Concrete instances subject to tailored attacks [4, 23].
How to best use PGV-ELC/ELC-P modes?

= High-arity/mixed-arity Merkle-Trees.
= Fiat-Shamir with known (reasonably short) message length.

| Area cost, especially for HW implementations.

14

Experiments

Target Design Strategies

HADES (POSEIDON):

= ‘Partial’ SPN structure.

15

Target Design Strategies

HADES (POSEIDON):
= ‘Partial’ SPN structure.

= High number of rounds.

15

Target Design Strategies

HADES (POSEIDON):
= ‘Partial’ SPN structure.
= High number of rounds.

= Lightweight key schedule.

15

Target Design Strategies

HADES (POSEIDON):
= ‘Partial’ SPN structure.
= High number of rounds.

= Lightweight key schedule.

[ARC(-) | ‘

[M() |

[ARC(-) |

|v _ .””v ,lJ

ARC() |

IIIIII L] v

M() |

15

Target Design Strategies

HADES (POSEIDON): MARVELIlous (Rescue):
= ‘Partial’ SPN structure.
= High number of rounds.

= Lightweight key schedule.

[ARC(-) | ‘

[M() |

[ARC(-) |

W

ARC() |

IIIIII L] o
M() |J

15

Target Design Strategies

HADES (POSEIDON): MARVELIlous (Rescue):
= ‘Partial’ SPN structure. = ‘Double’ SPN structure.
= High number of rounds.

= Lightweight key schedule.

[ARC(-) | ‘

[M() |

[ARC(-) |

W

ARC() |

IIIIII L] o
M() |J

15

Target Design Strategies

HADES (POSEIDON):
= ‘Partial’ SPN structure. .

= High number of rounds.

MARVELIlous (Rescue):
‘Double’ SPN structure.

= Low number of rounds.

= Lightweight key schedule.

[ARC(-)

[M(-)

[ARC(-)

[M(-)

ARC(-)

M(-)

15

Target Design Strategies

HADES (POSEIDON): MARVELIlous (Rescue):
= ‘Partial’ SPN structure. = ‘Double’ SPN structure.
= High number of rounds. = Low number of rounds.
= Lightweight key schedule. = Heavyweight key schedule.

[ARC(-) | ‘

[M() |

[ARC(-) |

W

ARC() |

IIIIII L] o
M() |J

15

Target Design Strategies

HADES (POSEIDON): MARVELIlous (Rescue):
= ‘Partial’ SPN structure. = ‘Double’ SPN structure.
= High number of rounds. = Low number of rounds.
= Lightweight key schedule. = Heavyweight key schedule.

[ARC(-) |
sl
il

1
l
1)

e

[ARC(-)

[M(-)

ARC(-)

M(-)

 H=H |
—

15

Concrete Instantiances

How did we parametrize HADES and Rescue:

16

Concrete Instantiances

How did we parametrize HADES and Rescue:

= Fields: Goldilocks (64 bits) and BLS12 scalar (256 bits).

16

Concrete Instantiances

How did we parametrize HADES and Rescue:

= Fields: Goldilocks (64 bits) and BLS12 scalar (256 bits).
= Sbox: @ = min{a|gcd(a,p—1) =1}

16

Concrete Instantiances

How did we parametrize HADES and Rescue:

= Fields: Goldilocks (64 bits) and BLS12 scalar (256 bits).

= Sbox: @ = min{a|gcd(a,p—1) =1}
1

= Affine layers use Hilbert’'s MDS matrix: m;; = g

¢ Also used for Poseidon’s key scheduler.

16

Concrete Instantiances

How did we parametrize HADES and Rescue:

Fields: Goldilocks (64 bits) and BLS12 scalar (256 bits).

= Sbox: @ = min{a|gcd(a,p—1) =1}
= Affine layers use Hilbert’'s MDS matrix: m;; = ,ﬂ%l

¢ Also used for Poseidon’s key scheduler.

= Round numbers computed according to [18, 27].

16

Concrete Instantiances

How did we parametrize HADES and Rescue:

= Fields: Goldilocks (64 bits) and BLS12 scalar (256 bits).

= Sbox: @ = min{a|gcd(a,p—1) =1}
1

= Affine layers use Hilbert’'s MDS matrix: m;; = g

¢ Also used for Poseidon’s key scheduler.

= Round numbers computed according to [18, 27].

= All compression /expansion matrices set to pseudo-identity.
¢ Match the Trunc mode used in e.g. GRIFFIN [16].

16

Concrete Instantiances

How did we parametrize HADES and Rescue:

= Fields: Goldilocks (64 bits) and BLS12 scalar (256 bits).

= Sbox: @ = min{a|gcd(a,p—1) =1}
1

= Affine layers use Hilbert’'s MDS matrix: m;; = g

¢ Also used for Poseidon’s key scheduler.

= Round numbers computed according to [18, 27].
= All compression /expansion matrices set to pseudo-identity.
¢ Match the Trunc mode used in e.g. GRIFFIN [16].

= Security target: 128 bits of collision resistance.

16

Plain performance

Native execution performance:

2Intel Core i9-13900KF, Clear Linux, libarith, icpx -03 -march=native

17

Plain performance

Native execution performance:

» C++ software implementation?.

2Intel Core i9-13900KF, Clear Linux, libarith, icpx -03 -march=native

17

Plain performance

Native execution performance:

» C++ software implementation?.

= Light scheduler or long state = PGV-ELC.

2Intel Core i9-13900KF, Clear Linux, libarith, icpx -03 -march=native

17

Plain performance

Native execution performance:

» C++ software implementation?.
= Light scheduler or long state = PGV-ELC.
= Heavy scheduler and short state = ELC-P.

2Intel Core i9-13900KF, Clear Linux, libarith, icpx -03 -march=native

17

Plain performance

Native execution performance:

» C++ software implementation?.
= Light scheduler or long state = PGV-ELC.
= Heavy scheduler and short state = ELC-P.

I PGV-ELC provides more parallelization opportunities.

2Intel Core i9-13900KF, Clear Linux, libarith, icpx -03 -march=native

17

Plain performance

Native execution performance:

» C++ software implementation?.
= Light scheduler or long state = PGV-ELC.
= Heavy scheduler and short state = ELC-P.

PGV-ELC provides more parallelization opportunities.

logy(p) ~ 256 logy(p) ~ 64

Rate | LC-P PGV Sponge | LC-P PGV Sponge
2 2:1 | 7.52ps 123ps 13.2ps | 4.12ps 2.57ps 8.49ps
S 41 | 193ps 12.1ps 28.2ps | 14.8ps 7.02ps 35.0ps
T 81 69.7ps 36.8ps 84.4ps | 164ps 27.5ps 223.6 ps
e 2:1 183pus 385pus 208ps | 22.1ps 24.2ps 33.3ps
§ 4:1 217ps 401ps 220ps | 47.1ps 43.9ps 58.9ps
& g1 320ps 458ps 354ps | 136ps 92.4ps 143 ps

2Intel Core i9-13900KF, Clear Linux, libarith, icpx -03 -march=native

17

Groth16 benchmarks

We considered the Groth1l6 ZK-SNARK [21]:

3Same setup, + libsnark.

18

Groth16 benchmarks

We considered the Groth1l6 ZK-SNARK [21]:

= Requires a pairing-friendly elliptic curve like BLS12-381.

3Same setup, + libsnark.

18

Groth16 benchmarks

We considered the Groth1l6 ZK-SNARK [21]:

= Requires a pairing-friendly elliptic curve like BLS12-381.
= Preimage-verification circuit3:

3Same setup, + libsnark.

18

Groth16 benchmarks

We considered the Groth1l6 ZK-SNARK [21]:

= Requires a pairing-friendly elliptic curve like BLS12-381.
= Preimage-verification circuit3:
o R1CS arithmetization: Ax ©® Bx = Cx.

3Same setup, + libsnark.

18

Groth16 benchmarks

We considered the Groth1l6 ZK-SNARK [21]:

= Requires a pairing-friendly elliptic curve like BLS12-381.
= Preimage-verification circuit3:

o R1CS arithmetization: Ax ©® Bx = Cx.

o Complexity depends mainly on the # of multiplications.

3Same setup, + libsnark.

18

Groth16 benchmarks

We considered the Groth1l6 ZK-SNARK [21]:

= Requires a pairing-friendly elliptic curve like BLS12-381.
= Preimage-verification circuit3:

o R1CS arithmetization: Ax ©® Bx = Cx.

o Complexity depends mainly on the # of multiplications.

R1CS constraints Proof Generation time

Ratio | LC-P PGV Sponge | LC-P PGV Sponge
@ 2:1 221 221 246 729ms 73.0ms 75.8ms
2 41 268 218 293 83.0ms 73.4ms 89.4ms
T 81 368 268 393 105ms 83.9ms 115ms
L 2:1 240 432 252 67.2ms 107ms 67.7ms
5 4:1 264 480 270 71.1ms 116ms 73.4ms
g1 384 528 432 102ms 126ms 110ms

3Same setup, + libsnark.

18

Plonky2 benchmarks

We also considered the Plonky2 ZK-SNARK [28]:

19

Plonky2 benchmarks

We also considered the Plonky2 ZK-SNARK [28]:

= Uses FRI [5] over the Goldilocks field (high 2-adicity).

19

Plonky2 benchmarks

We also considered the Plonky2 ZK-SNARK [28]:

= Uses FRI [5] over the Goldilocks field (high 2-adicity).

= Employs Plonkish arithmetization:

19

Plonky2 benchmarks

We also considered the Plonky2 ZK-SNARK [28]:

= Uses FRI [5] over the Goldilocks field (high 2-adicity).
= Employs Plonkish arithmetization:
¢ Based on Plonk [14] + custom gates.

19

Plonky2 benchmarks

We also considered the Plonky2 ZK-SNARK [28]:

= Uses FRI [5] over the Goldilocks field (high 2-adicity).
= Employs Plonkish arithmetization:

¢ Based on Plonk [14] + custom gates.
o Applies optimizations to the circuit description.

19

Plonky2 benchmarks

We also considered the Plonky2 ZK-SNARK [28]:

= Uses FRI [5] over the Goldilocks field (high 2-adicity).
= Employs Plonkish arithmetization:

¢ Based on Plonk [14] + custom gates.
o Applies optimizations to the circuit description.

gates Proof Generation time

Ratio | LC-P PGV Sponge | LC-P PGV Sponge
2 2:1 122 70 259 11.3ms 11.1ms 16.5ms
«D: 4:1 439 226 668 26.0ms 16.2ms 27.1ms
T 81 2065 847 2864 90.8ms 47.5ms 92.9ms
v 2:1 91 75 175 10.9ms 8.58ms 17.2ms
033 4:1 284 182 418 16.8ms 11.5ms 27.1ms
81 | 976 568 1213 | 47.9ms 26.5ms 49.0ms

19

Merkle Tree arity benchmarks

Binary Merkle trees are the standard choice: larger arities?

20

Merkle Tree arity benchmarks

Binary Merkle trees are the standard choice: larger arities?

= We devised an optimized R1CS for MT openings [2]:

20

Merkle Tree arity benchmarks

Binary Merkle trees are the standard choice: larger arities?

= We devised an optimized R1CS for MT openings [2]:
¢ Slight change in the opening structure (copath + full path).

20

Merkle Tree arity benchmarks

Binary Merkle trees are the standard choice: larger arities?

= We devised an optimized R1CS for MT openings [2]:
¢ Slight change in the opening structure (copath + full path).
& up to 15% improvement for reasonable arities.

20

Merkle Tree arity benchmarks

Binary Merkle trees are the standard choice: larger arities?

= We devised an optimized R1CS for MT openings [2]:
¢ Slight change in the opening structure (copath + full path).
& up to 15% improvement for reasonable arities.
¢ Scales with tree arity and compactness of the CF.

20

Merkle Tree arity benchmarks

Binary Merkle trees are the standard choice: larger arities?

= We devised an optimized R1CS for MT openings [2]:

¢ Slight change in the opening structure (copath + full path).
& up to 15% improvement for reasonable arities.

¢ Scales with tree arity and compactness of the CF.

6,000

4,000

Time [ms]

2,000

- - - POSEIDON-Sponge (2:1)
- - - POSEIDON-Sponge (4:1)
- - - POSEIDON-Sponge (8:1) ’
—— POSEIDON-PGV (2:1) s

—— POSEIDON-PGV (4:1) -

—— POSEIDON-PGV (8:1)

Il Il Il
0.5 1 1.5 2 2.5

Message length [F,, elements].15

Time [ms]

2,000

1,500 -

1,000

500

- - - POSEIDON2-Trunc (2:1)
- - - POsEIDON2-Trunc (4:1)
- - - PosEmonN2-Trunc (8:1)
—— POSEIDON2-PGV (2:1) @
—— POSEIDON2-PGV (4:1)
—— POSEIDON2-PGV (8:1) e

Il Il Il
0.5 1 1.5 2 2.5
Message length [F, elements].1(?

20

Roll credits

The End

Thank you for your attention!
Any questions?

21

Bibliography i

[Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab
Roy, and Tyge Tiessen.
Mimc: Efficient encryption and cryptographic hashing
with minimal multiplicative complexity.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in
Cryptology — ASIACRYPT 2016, pages 191-219, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[§ Elena Andreeva, Rishiraj Bhattacharyya, Arnab Roy, and
Stefano Trevisani.
On Efficient and Secure Compression Functions for
Arithmetization-Oriented Hashing.

22

Bibliography ii

In 2024 IEEE 37th Computer Security Foundations Symposium
(CSF), pages 1-16, Los Alamitos, CA, USA, Jul 2024. IEEE
Computer Society.

[4 Tomer Ashur and Siemen Dhooghe.
Marvellous: a stark-friendly family of cryptographic
primitives.
Cryptology ePrint Archive, Paper 2018/1098, 2018.
https://eprint.iacr.org/2018/1098.

23

https://eprint.iacr.org/2018/1098

Bibliography iii

E Augustin Bariant, Aurélien Boeuf, Axel Lemoine,
Irati Manterola Ayala, Morten @ygarden, Léo Perrin, and
Hévard Raddum.
The algebraic freelunch efficient grobner basis attacks
against arithmetization-oriented primitives.
Cryptology ePrint Archive, Paper 2024 /347, 2024.
https://eprint.iacr.org/2024/347.

@ Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael
Riabzev.
Fast Reed-Solomon Interactive Oracle Proofs of
Proximity.
In loannis Chatzigiannakis, Christos Kaklamanis, Daniel Marx,
and Donald Sannella, editors, 45th International Colloquium

24

https://eprint.iacr.org/2024/347

Bibliography iv

on Automata, Languages, and Programming (ICALP 2018),
volume 107 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 14:1-14:17, Dagstuhl, Germany, 2018. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik.

[§] Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles
Van Assche.
Sponge functions.
In ECRYPT hash workshop, volume 2007, 2007.

25

Bibliography v

[Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles
Van Assche.
On the indifferentiability of the sponge construction.
In Nigel Smart, editor, Advances in Cryptology —
EUROCRYPT 2008, pages 181-197, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[4 Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena
Andreeva, and Bart Preneel.
Let’s go eevee! a friendly and suitable family of aead
modes for iot-to-cloud secure computation.
In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS '23, pages

26

Bibliography vi

2546-2560, New York, NY, USA, 2023. Association for
Computing Machinery.

[§ John Black, Phillip Rogaway, and Thomas Shrimpton.
Black-box analysis of the block-cipher-based
hash-function constructions from pgv.

In Moti Yung, editor, Advances in Cryptology — CRYPTO
2002, pages 320-335, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

[§ Joppe W. Bos and Peter L. Montgomery.

Montgomery arithmetic from a software perspective.
Cryptology ePrint Archive, Paper 2017/1057, 2017.
https://eprint.iacr.org/2017/1057.

27

https://eprint.iacr.org/2017/1057

Bibliography vii

[Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin,
Robin Salen, Vesselin Velichkov, and Danny Willems.
New design techniques for efficient
arithmetization-oriented hash functions: Anemoi
permutations and Jive compression mode.
In Helena Handschuh and Anna Lysyanskaya, editors,
Advances in Cryptology — CRYPTO 2023, pages 507-539,
Cham, 2023. Springer Nature Switzerland.

[§ Alessandro Chiesa, Dev Ojha, and Nicholas Spooner.
Fractal: Post-quantum and transparent recursive proofs

from holography.
Cryptology ePrint Archive, Paper 2019/1076, 20109.
https://eprint.iacr.org/2019/1076.

28

https://eprint.iacr.org/2019/1076

Bibliography viii

[Orr Dunkelman and Nathan Keller.
The effects of the omission of last round’s mixcolumns
on aes.
Information Processing Letters, 110(8):304-308, 2010.

[§ Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru.
Plonk: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, Paper 2019/953, 2019.
https://eprint.iacr.org/2019/953.

[§ Shafi Goldwasser, Silvio Micali, and Charles Rackoff.

The knowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186—208, 1989.

29

https://eprint.iacr.org/2019/953

Bibliography ix

[§ Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus
Schofnegger, Roman Walch, and Qingju Wang.
Horst meets fluid-spn: Griffin for zero-knowledge

applications.
Cryptology ePrint Archive, Paper 2022/403, 2022.
https://eprint.iacr.org/2022/403

[§ Lorenzo Grassi, Dmitry Khovratovich, Reinhard Liiftenegger,
Christian Rechberger, Markus Schofnegger, and Roman
Walch.

Hash functions monolith for zk applications: May the

speed of sha-3 be with you.
Cryptology ePrint Archive, Paper 2023/1025, 2023.
https://eprint.iacr.org/2023/1025

30

https://eprint.iacr.org/2022/403
https://eprint.iacr.org/2023/1025

Bibliography x

@ Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger,
Arnab Roy, and Markus Schofnegger.
Poseidon: A new hash function for Zero-Knowledge
proof systems.
In 30th USENIX Security Symposium (USENIX Security 21),
pages 519-535. USENIX Association, aug 2021.

@ Lorenzo Grassi, Dmitry Khovratovich, and Markus
Schofnegger.
Poseidon2: A faster version of the poseidon hash

function.
Cryptology ePrint Archive, Paper 2023/323, 2023.
https://eprint.iacr.org/2023/323.

31

https://eprint.iacr.org/2023/323

Bibliography xi

[§ Lorenzo Grassi, Reinhard Liiftenegger, Christian Rechberger,
Dragos Rotaru, and Markus Schofnegger.
On a generalization of substitution-permutation

networks: The hades design strategy.
Cryptology ePrint Archive, Paper 2019/1107, 2019.
https://eprint.iacr.org/2019/1107.

[§ Jens Groth.
On the size of pairing-based non-interactive arguments.
In Marc Fischlin and Jean-Sébastien Coron, editors, Advances
in Cryptology — EUROCRYPT 2016, pages 305-326, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

32

https://eprint.iacr.org/2019/1107

Bibliography xii

[§ Dmitry Khovratovich, Mario Marhuenda Beltran, and Bart
Mennink.
Generic security of the safe api and its applications.
In Jian Guo and Ron Steinfeld, editors, Advances in
Cryptology — ASIACRYPT 2023, pages 301-327, Singapore,
2023. Springer Nature Singapore.

[§ Katharina Koschatko, Reinhard Liiftenegger, and Christian
Rechberger.
Exploring the six worlds of grobner basis cryptanalysis:
Application to anemoi.
IACR Transactions on Symmetric Cryptology,
2024(4):138-190, Dec. 2024.

33

Bibliography xiii

[d Ralph Charles Merkle.
Secrecy, Authentication, and Public Key Systems.
PhD thesis, Stanford University, Stanford, CA, USA, 1979.
AAI8001972.

[§ Bart Preneel, René Govaerts, and Joos Vandewalle.
Hash functions based on block ciphers: A synthetic
approach.
In Advances in Cryptology - CRYPTO '93, 13th Annual
International Cryptology Conference, Santa Barbara,
California, USA, August 22-26, 1993, Proceedings, volume 773
of Lecture Notes in Computer Science, pages 368—378.
Springer, 1993.

34

Bibliography xiv

[4 Arnab Roy and Matthias Johann Steiner.
Generalized triangular dynamical system: An algebraic
system for constructing cryptographic permutations over
finite fields.
Cryptology ePrint Archive, Paper 2024 /1316, 2024.

G Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe.
Rescue-prime: a standard specification (sok).
Cryptology ePrint Archive, Paper 2020/1143, 2020.
https://eprint.iacr.org/2020/1143.

35

https://eprint.iacr.org/2020/1143

Bibliography xv

[d Polygon Zero Team.
Plonky2: Fast recursive arguments with plonk and fri,

September 2022.
https://github.com/0xPolygonZero/plonky2/blob/

main/plonky2/plonky?2.pdf.

36

https://github.com/0xPolygonZero/plonky2/blob/main/plonky2/plonky2.pdf
https://github.com/0xPolygonZero/plonky2/blob/main/plonky2/plonky2.pdf

	Verifiable Computation, Blockchains, and ZK-SNARKs
	Flexible AO Compression Modes Joint work E. Andreeva, R. Bhattacharyya, A. Roy
	Security Results
	Experiments

