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Verifiable Computation for Trusted Cloud/P2P:

. : computes some function F(pub, sec).

= Client: verifies the correctness of the output.
= ZK-SNARKsS:
o <— , Client <= Verifier

= Virtual Machines, Blockchains, Recursive SNARKs...
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Figure 1: Left: binary Merkle Tree. Right: Fractal [12] verifier.
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Cost of hashing in ZK-SNARK:

= Verification is fast (often constant time).
] depends on Multiplicative Complexity:

o Circuit over a large prime field IF, (log(p) € {64,128, 256}).
Bit-oriented hash functions = high MC.

¢ Bitwise operations are expensive to emulate.

Arithmetization-oriented hash functions = low MC.

¢ defined directly over F,.

Native (SW/HW) performance is still important!



Flexible AO Compression Modes

Joint work E. Andreeva, R. Bhattacharyya, A. Roy



Compositional Paradigms

Hash functions from provably secure compositional paradigms:



Compositional Paradigms

Hash functions from provably secure compositional paradigms:

= Permutation-based Sponge mode [6]:



Compositional Paradigms

Hash functions from provably secure compositional paradigms:

= Permutation-based Sponge mode [6]:
& Provably secure over Fy and F, [7, 22]).



Compositional Paradigms

Hash functions from provably secure compositional paradigms:

= Permutation-based Sponge mode [6]:
& Provably secure over Fy and F, [7, 22]).
2t Cannot use the key input to compress data.



Compositional Paradigms

Hash functions from provably secure compositional paradigms:

= Permutation-based Sponge mode [6]:
& Provably secure over Fy and F, [7, 22]).
2t Cannot use the key input to compress data.

= Blockcipher-based PGV modes [25]:



Compositional Paradigms

Hash functions from provably secure compositional paradigms:

= Permutation-based Sponge mode [6]:
& Provably secure over Fy and F, [7, 22]).
2t Cannot use the key input to compress data.

= Blockcipher-based PGV modes [25]:

.

¥ Provably secure over Fy [9].



Compositional Paradigms

Hash functions from provably secure compositional paradigms:

= Permutation-based Sponge mode [6]:
& Provably secure over Fy and F, [7, 22]).
2t Cannot use the key input to compress data.

= Blockcipher-based PGV modes [25]:

¥ Provably secure over Fy [9].
& Exploits both key and plaintext inputs for compression.
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We also introduced the ELC-P family of modes [to appear]:

» Based on a permutation 7: F' — F".
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How did we parametrize HADES and Rescue:

= Fields: Goldilocks (64 bits) and BLS12 scalar (256 bits).

= Sbox: @ = min{a|gcd(a,p—1) =1}
1

= Affine layers use Hilbert’'s MDS matrix: m;; = g

¢ Also used for Poseidon’s key scheduler.

= Round numbers computed according to [18, 27].
= All compression /expansion matrices set to pseudo-identity.
¢ Match the Trunc mode used in e.g. GRIFFIN [16].

= Security target: 128 bits of collision resistance.
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Plain performance

Native execution performance:

» C++ software implementation?.
= Light scheduler or long state = PGV-ELC.
= Heavy scheduler and short state = ELC-P.

PGV-ELC provides more parallelization opportunities.

logy(p) ~ 256 logy(p) ~ 64

Rate | LC-P PGV  Sponge | LC-P PGV Sponge
2 2:1 | 7.52ps 123ps  13.2ps | 4.12ps  2.57ps  8.49ps
S 41 | 193ps 12.1ps 28.2ps | 14.8ps 7.02ps  35.0ps
T 81 69.7ps  36.8ps  84.4ps | 164ps  27.5ps  223.6 ps
e 2:1 183pus  385pus  208ps | 22.1ps 24.2ps  33.3ps
§ 4:1 217ps  401ps  220ps | 47.1ps 43.9ps  58.9ps
& g1 320ps  458ps  354ps | 136ps  92.4ps 143 ps

2Intel Core i9-13900KF, Clear Linux, libarith, icpx -03 -march=native
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Groth16 benchmarks

We considered the Groth1l6 ZK-SNARK [21]:

= Requires a pairing-friendly elliptic curve like BLS12-381.
= Preimage-verification circuit3:

o R1CS arithmetization: Ax ©® Bx = Cx.

o Complexity depends mainly on the # of multiplications.

# R1CS constraints Proof Generation time

Ratio | LC-P PGV Sponge | LC-P PGV Sponge
@ 2:1 221 221 246 729ms 73.0ms 75.8ms
2 41 268 218 293 83.0ms 73.4ms 89.4ms
T 81 368 268 393 105ms  83.9ms 115ms
L 2:1 240 432 252 67.2ms 107ms 67.7ms
5 4:1 264 480 270 71.1ms 116ms 73.4ms
g1 384 528 432 102ms  126ms  110ms

3Same setup, + libsnark.
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Plonky2 benchmarks

We also considered the Plonky2 ZK-SNARK [28]:

= Uses FRI [5] over the Goldilocks field (high 2-adicity).
= Employs Plonkish arithmetization:

¢ Based on Plonk [14] + custom gates.
o Applies optimizations to the circuit description.

# gates Proof Generation time

Ratio | LC-P PGV  Sponge | LC-P PGV Sponge
2 2:1 122 70 259 11.3ms 11.1ms 16.5ms
«D: 4:1 439 226 668 26.0ms 16.2ms 27.1ms
T 81 2065 847 2864 90.8ms 47.5ms 92.9ms
v 2:1 91 75 175 10.9ms 8.58ms 17.2ms
033 4:1 284 182 418 16.8ms 11.5ms 27.1ms
81 | 976 568 1213 | 47.9ms 26.5ms 49.0ms

19
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= We devised an optimized R1CS for MT openings [2]:

¢ Slight change in the opening structure (copath + full path).
& up to 15% improvement for reasonable arities.

¢ Scales with tree arity and compactness of the CF.
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Roll credits

The End

Thank you for your attention!
Any questions?

21
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