
Hash functions in the context of
PIOP-based SNARKs

ALPSY 2025

Marek Sefranek
TU Wien

Motivation

● Zero-knowledge: prove something is true without revealing why
○ For example: prove age over certain limit (“digital ID”) without revealing it

○ Comply with rules with minimal disclosure of information (GDPR)

2

● Applications:
○ Enforce parties follow a protocol (MPC)

○ Verifiable computation, anonymous credentials

○ Enable trust in decentralized systems such as blockchains

○ Fully anonymous cryptocurrencies, e.g. Zcash

○ …

Zero-Knowledge Proof

● Let R be an NP relation and L the corresponding language
● Prove statement x ∈ L without revealing witness w

3

m1

m2

⋮
Prover Verifier

x, w x

Zero-Knowledge Proof – Properties

● Completeness/Soundness: statement true ⟺ verifier accepts
● Zero Knowledge: can efficiently simulate view of verifier only given x

4

m1

m2

⋮
Prover Verifier

x, w x

zk-SNARK
● Zero-Knowledge Succinct Non-interactive ARgument of Knowledge

5

Prover Verifier

x, w x

|𝜋| ≪ |w|

zk-SNARK
● Zero-Knowledge Succinct Non-interactive ARgument of Knowledge
● Need trusted setup: common reference string (CRS)

5

Prover Verifier

CRS

x, w x

zk-SNARK
● Zero-Knowledge Succinct Non-interactive ARgument of Knowledge
● Need trusted setup: common reference string (CRS)
● Zero knowledge: simulator can set up CRS, knowing “trapdoor”

5

Prover Verifier

CRS

x, w x

● Already seen many examples throughout this workshop:

○ ZK proof of knowledge of hash preimage

○ Merkle trees, membership proofs

○ And many more applications in blockchains…

● NP relation R usually modelled via circuit satisfiability

Hash Functions in SNARK Applications

6

● Arithmetic circuit over large prime field 𝔽p

● ⟹ AO/algebraic hash functions preferable

● ⟹ Low multiplicative depth desirable

⨉

x3

x4

+

x1 x2

Recursive SNARKs

● Instead of computing k proofs 𝜋1, …, 𝜋k for the statements x1, …, xk:

○ Compute the proof 𝜋1 for x1

○ Compute the proof 𝜋2 for x2 and the validity of 𝜋1

○ …

○ Compute the proof 𝜋k for xk and the validity of 𝜋k-1

● Validity of 𝜋k implies that all the statements x1, …, xk hold

● Recursive proofs need verifier in-circuit (which calls H)

● Applications: incrementally verifiable computation, constant-size blockchains

7

The SNARK Landscape

8

Plonk

Setup

|𝜋|

transparent universal circuit-specific

STARKs

Bulletproofs

Groth16

Sonic
Marlin

Lunar
Vampire

PIOP-based

9

Prover

x, w

Verifier

x

PIOPs – Polynomial Interactive Oracle Proofs

9

Prover

x, w

Verifier

x

PIOPs – Polynomial Interactive Oracle Proofs

9

Prover

x, w

Verifier

x

PIOPs – Polynomial Interactive Oracle Proofs

9

⋮
Prover

x, w

Verifier

x

PIOPs – Polynomial Interactive Oracle Proofs

9

⋮
Prover

x, w

Verifier

x

0 / 1

PIOPs – Polynomial Interactive Oracle Proofs

● Schwartz–Zippel lemma: “a non-zero polynomial is non-zero almost
everywhere”

● In particular: for a finite field 𝔽p, the probability is at most deg f / p

● Schwartz–Zippel lemma: “a non-zero polynomial is non-zero almost
everywhere”

Why Polynomials?

10

PIOPs – Compilation to a SNARK

11

⋮
Prover

x, w

Verifier

x

0 / 1

PIOPs – Compilation to a SNARK

11

⋮
Prover

x, w

Verifier

x

0 / 1

PIOPs – Compilation to a SNARK

11

● Step 1: Polynomial Commitment Scheme

⋮
Prover

x, w

Verifier

x

0 / 1

PIOPs – Compilation to a SNARK

11

⋮
Prover

x, w

Verifier

x

0 / 1

● Step 1: Polynomial Commitment Scheme

PIOPs – Compilation to a SNARK

11

⋮
Prover

x, w

Verifier

x

0 / 1

● Step 1: Polynomial Commitment Scheme

PIOPs – Compilation to a SNARK

12

⋮
Prover

x, w

Verifier

x

0 / 1

● Step 2: Fiat-Shamir Transformation

PIOPs – Compilation to a SNARK

12

⋮
Prover

x, w

Verifier

x

0 / 1

● Step 2: Fiat-Shamir Transformation

PIOPs – Compilation to a SNARK

12

⋮
Prover

x, w

Verifier

x

0 / 1

● Step 2: Fiat-Shamir Transformation

PIOPs – Compilation to a SNARK

12

Prover

x, w

Verifier

x

0 / 1

● Step 2: Fiat-Shamir Transformation

Properties Needed from H

● Note that P and V both need to evaluate H

● Inputs trans1, ..., transr to H prefixes of each other ⟹ stateful H more efficient

● Usually modelled as a random oracle in security proofs, i.e., H needs to be a

strong cryptographic hash function

● Another approach:

○ Correlation-intractable hash functions

○ For some fixed (sparse) relation R, it should be hard to find x s.t. (x, H(x)) ∈ R

○ For example: R = { (f, z) | f low-degree non-zero polynomial, f(z) = 0 }

13

Open Questions

● Prove security of Fiat-Shamir transformation without ROM

● Find necessary properties of H for this (CR, PR not enough!)

● Construct correlation-intractable hash functions:

○ Theoretical construction (feasibility result)

○ Practical construction?

14

Thanks!
Questions?

Appendix

15

Uniformity Property

● Let Samp be an efficient sampling algorithm with |Samp(1λ)| = λω(1)

● We want Pr[H(x) = y] = negl(λ) for all y and x ← Samp(1λ)

● Can be used to prove ZK of PLONK (without ROM)

● Implied by collision resistance, but is a weaker information-theoretic property

● Do all (cryptographic) hash functions have this property?

16

● Succinctly commit to a polynomial

● Later prove evaluations, i.e., for any point show that

● CRS: for uniform “trapdoor” 𝜏 ∈ 𝔽

● A commitment to a polynomial is

17

KZG Polynomial Commitment [KZG10]

References

18

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-Size
Commitments to Polynomials and Their Applications. In Advances in
Cryptology – ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194.
Springer, 2010. https://doi.org/10.1007/978-3-642-17373-8_11.

https://doi.org/10.1007/978-3-642-17373-8_11

