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Motivation

● Zero-knowledge: prove something is true without revealing why
○ For example: prove age over certain limit (“digital ID”) without revealing it

○ Comply with rules with minimal disclosure of information (GDPR)
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● Applications:
○ Enforce parties follow a protocol (MPC)

○ Verifiable computation, anonymous credentials

○ Enable trust in decentralized systems such as blockchains

○ Fully anonymous cryptocurrencies, e.g. Zcash

○ …



Zero-Knowledge Proof

● Let R be an NP relation and L the corresponding language
● Prove statement x ∈ L without revealing witness w
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Zero-Knowledge Proof – Properties

● Completeness/Soundness: statement true ⟺ verifier accepts
● Zero Knowledge: can efficiently simulate view of verifier only given x
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zk-SNARK
● Zero-Knowledge Succinct Non-interactive ARgument of Knowledge
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zk-SNARK
● Zero-Knowledge Succinct Non-interactive ARgument of Knowledge
● Need trusted setup: common reference string (CRS)
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zk-SNARK
● Zero-Knowledge Succinct Non-interactive ARgument of Knowledge
● Need trusted setup: common reference string (CRS)
● Zero knowledge: simulator can set up CRS, knowing “trapdoor”
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● Already seen many examples throughout this workshop:

○ ZK proof of knowledge of hash preimage

○ Merkle trees, membership proofs

○ And many more applications in blockchains…

● NP relation R usually modelled via circuit satisfiability

Hash Functions in SNARK Applications
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● Arithmetic circuit over large prime field 𝔽p

● ⟹ AO/algebraic hash functions preferable

● ⟹ Low multiplicative depth desirable

⨉

x3

x4

+

x1 x2



Recursive SNARKs

● Instead of computing k proofs 𝜋1, …, 𝜋k for the statements x1, …, xk:

○ Compute the proof 𝜋1 for x1

○ Compute the proof 𝜋2 for x2 and the validity of 𝜋1

○ …

○ Compute the proof 𝜋k for xk and the validity of 𝜋k-1

● Validity of 𝜋k implies that all the statements x1, …, xk hold

● Recursive proofs need verifier in-circuit (which calls H)

● Applications: incrementally verifiable computation, constant-size blockchains
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The SNARK Landscape
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● Schwartz–Zippel lemma: “a non-zero polynomial is non-zero almost 
everywhere”

● In particular: for a finite field 𝔽p, the probability is at most deg f / p

● Schwartz–Zippel lemma: “a non-zero polynomial is non-zero almost 
everywhere”

Why Polynomials?
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PIOPs – Compilation to a SNARK
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PIOPs – Compilation to a SNARK
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● Step 1: Polynomial Commitment Scheme
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Properties Needed from H

● Note that P and V both need to evaluate H

● Inputs trans1, ..., transr to H prefixes of each other ⟹ stateful H more efficient

● Usually modelled as a random oracle in security proofs, i.e., H needs to be a 

strong cryptographic hash function

● Another approach:

○ Correlation-intractable hash functions

○ For some fixed (sparse) relation R, it should be hard to find x s.t. (x, H(x)) ∈ R

○ For example: R = { (f, z) | f low-degree non-zero polynomial, f(z) = 0 }
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Open Questions

● Prove security of Fiat-Shamir transformation without ROM

● Find necessary properties of H for this (CR, PR not enough!)

● Construct correlation-intractable hash functions:

○ Theoretical construction (feasibility result)

○ Practical construction?
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Thanks!
Questions?



Appendix
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Uniformity Property

● Let Samp be an efficient sampling algorithm with |Samp(1λ)| = λω(1)

● We want Pr[H(x) = y] = negl(λ) for all y and x ← Samp(1λ)

● Can be used to prove ZK of PLONK (without ROM)

● Implied by collision resistance, but is a weaker information-theoretic property

● Do all (cryptographic) hash functions have this property?
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● Succinctly commit to a polynomial 

● Later prove evaluations, i.e., for any point              show that

● CRS:                                                  for uniform “trapdoor” 𝜏 ∈ 𝔽

● A commitment to a polynomial                                                   is
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KZG Polynomial Commitment [KZG10]
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