

Language-guided Manipulator Motion **Planning with Bounded Task Space** Thies Oelerich Christian Hartl-Nesic Andreas Kugi

generate and explain

Problem Description

Find a robot manipulator trajectory τ given a language instruction \mathcal{L} by a user, e.g.,

find au $\tau \in \tau_{\text{safe}}$ s.t. $I_{\text{success}}(\mathcal{L}) = 1$,

with

Isuccess: indicator function for a successful task • τ_{safe} : set of safe joint trajectories

Example

Consider the instruction $\mathcal{L} =$ "Wipe the table from right to left.":

- au_{safe} : Joint trajectories that do not collide with the table
- I_{success}: Indicating whether the table was successfully wiped, which requires approaching the right side of the table with the sponge,
 - wiping over the table from right to left.

Framework Overview

The motion planning framework consists of the following components:

Path Planner based on Convex Sets

TECHNISCHE

UNIVERSITÄT

WIEN

WIEN

Goal

(1)

Find a collision-free Cartesian path π from \mathbf{p}_0 to \mathbf{p}_f through the environment. The path deviation bounding functions $\overline{\Psi}$ and $\underline{\Psi}$ specify allowed deviations from the path π .

Procedure

1. Initialize a graph of convex sets \mathcal{G} .

- 2. Grow convex sets \mathcal{S}_k around K given sample points $\mathcal{P} = \{\mathbf{p}_{s,k} : k = 1, \dots, K\}$.
- 3. Add the convex sets \mathcal{S}_k to the graph \mathcal{G} .
- 4. Compute intersections between sets \mathcal{S}_k in the graph \mathcal{G} and their costs $c_{j,k}$, $j \neq k$.
- 5. Find optimal path of L sets $S_{\text{path},l}$, l = 1, ..., L, through graph G.
- 6. Find piecewise linear reference path through $S_{\text{path},l}$ defined by the via-points $\mathbf{p}_{\text{via},l}$. Each linear segment is contained within one convex set.
- 7. Compute the bounding functions $\overline{\Psi}_i$ and $\underline{\Psi}_i$ based on the convex sets $\mathcal{S}_{\text{path},l}$ for each linear segment in basis directions i = 1, 2.

- 1. An LLM for breaking down the instructions \mathcal{L} into actions \mathcal{A} defined in Python code,
- 2. a vision model to align the actions \mathcal{A} of the LLM with the RGB image of the scene and retrieve spatial locations from a 3D point cloud,
- 3. a novel path planner based on convex sets to plan a collision-free reference path π ,
- 4. and the model predictive controller BoundMPC to create a trajectory $\tau \in \tau_{safe}$ that traverses the reference path π .

Motivation for Global Reference Paths

The splitting of Cartesian reference path planning combined with joint-space trajectory optimization is motived by the following considerations:

- MPC-based trajectory planning is real-time capable.
- Global reference paths for the MPC increase task success and avoid local minima.
- Cartesian reference paths are easier to specify and allow task-specific constraints such as moving in a straight line or keeping a cup upright.
- Bounded reference path deviations allow more freedom to find executable trajectories, even in kinematically challenging situations.

Vision Model and Large Language Model

The vision model and the LLM are leveraged in the following way:

1. The LLM outputs Python code to perform the necessary actions \mathcal{A} to solve the task.

Experimental Results

The following tasks were performed to evaluate our method:

- 1. **Simple Move:** "Move the [obj] [into/onto] the [left/right] shelf."
- 2. Swapping: "Swap the [obj] with [obj] by using the [table/right shelf]."
- 3. **Reposition:** "Put the [obj][slowly/quickly] onto the [left/right] side of the table."
- 4. Arrangement: "Arrange the three blocks as a [line/triangle] on the table."
- 5. **Tea Cup:** "Place the tea cup onto the [left/right] shelf without spilling it."
- 6. **Wiping:** "Wipe the table from [left/right] to [right/left]."

Table 1. Comparison of our method with VoxPoser (VP)

Task	Suc	Success		Collision-free		Avg. path length	
	VP (Durs	VP	Ours	VP	Ours	VP Ours

- 2. This work uses a combination of language model programs (LMPs) with Chat-GPT4.
- 3. The Python code interfaces the LLM and the vision model to retrieve information of objects in the scene.
- 4. The object detection is zero-shot and able to use an open vocabulary.
- 5. Semantic segmentation helps to locate the object in the 3D scene.

Simple Move	33%	100 %	83%	100 %	1.44 m	1.48 m	3	2	
Swapping	0%	100 %	50%	100 %	-	4.43 m	11	6	
Reposition	100 %	100 %	100%	100 %	1.41 m	0.82 m	3	2	
Arrangement	0%	100 %	0%	100 %	4.33 m	3.72 m	11	6	
Tea Cup	0%	50%	100%	100 %	2.11 m	2.02 m	3	2	
Wiping	100 %	100 %	100%	100 %	1.84 m	1.22 m	4	1	

Conclusion

Our proposed method

- 1. outperforms existing state-of-the-art methods,
- 2. provides a modular approach to language-guided motion planning,
- 3. systematically considers the robot's kinematic,
- 4. creates safe and performant joint-space trajectories.