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Zero-Knowledge Proof – Properties

● Completeness/Soundness: statement true ⟺ verifier accepts
● Zero Knowledge: can efficiently simulate view of verifier only given x
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zk-SNARK
● Zero-Knowledge Succinct Non-interactive ARgument of Knowledge
● Need trusted setup: common reference string (CRS)
● Zero knowledge: simulator can set up CRS, knowing “trapdoor”
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PLONK

● State-of-the-art zk-SNARK by Gabizon, Williamson & Ciobotaru [GWC19]

● A proof is ≈0.5 kB and can be verified in milliseconds

● Universal & updatable structured reference string (SRS )

● Knowledge sound in AGM + ROM (or just ROM [LPS24])

● Supports custom gates and lookup gates

● Deployed in a variety of real-world projects 
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● Computational ZK: there exists a PPT simulator S such that for all
and all PPT adversaries
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PLONK – Simplified Overview

● For Z(X) ≔ (X - ω1)(X - ω2)···(X - ωn), want to show Z(X) | C(X)

● Prover commits to C(X) and quotient polynomial T(X) [KZG10]

● Its degree is 3n, where n is the number of gates

● Other polynomials have degree n ⟹ SRS has to be 3x as long

● To avoid this, PLONK splits T into 3 degree-n polynomials T1, T2, T3 s.t.

T(X) = T1(X) + X 
n T2(X) + X 

2n T3(X)
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PLONK – Proof

10

KZG commitments to 
witness polynomials

Witness polynomials
evaluated at challenge

Evaluations of public 
polynomials

KZG commitments to 
split quotient polynomial Batched KZG 

opening proofs
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PLONK’s ZK Technique

● Let              and                                   vanishing polynomial

● Take any polynomial

● For a random degree-d polynomial                , define

● Then evaluating    at any d - 1 points x1, …, xd-1 ∈ 𝔽 ∖ S results in uniform distr.

● Note that              if and only if
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● Prover randomizes witness polynomials A, B, C, Φ

● Pick random 𝜌1, 𝜌2 ∈ 𝔽 and define A(X) ≔ (𝜌1X + 𝜌2) Z(X) + ∑i∈[n] wi Li(X)

● Evaluations in proof are now independent of witness!

● Simulator: can just pick random values
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Zero Knowledge Vulnerability

● Without splitting T(X):

○ Can be simulated as T(𝜏) can be computed given the KZG trapdoor 𝜏

○ Proof independent of witness

● With the optimization:

○ T1, T2, T3 leak too much information about T(X)

○ Proof no longer independent of witness!
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● Randomize T1, T2, T3 so they are uniform conditioned on satisfying

T(X) = T1(X) + r1 X 
n + X 

n (T2(X) - r1 + r2 X 
n) + X 

2n (T3(X) - r2)
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● Can now be simulated as the value T(𝜏) can be:
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● Randomize T1, T2, T3 so they are uniform conditioned on satisfying

T(X) = T1(X) + r1 X 
n + X 

n (T2(X) - r1 + r2 X 
n) + X 

2n (T3(X) - r2)

for randomly chosen r1, r2 ∈ 𝔽

● Can now be simulated as the value T(𝜏) can be:

1. Choose uniform values for T2(𝜏) and T3(𝜏)

2. Set T1(𝜏) ≔ T(𝜏) - 𝜏n T2(𝜏) - 𝜏 2n T3(𝜏)

● Preserves knowledge soundness as verifier remains the same!

Zero Knowledge Fix
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Attack on Old PLONK

● “Old PLONK not stat. witness indistinguishable” ⟹ “not stat. ZK”

● Idea: Solve system of linear equations to recover blinding scalars used by 
prover to mask witness polynomials

● Compare against resulting values of T1(𝜏), T2(𝜏), T3(𝜏)
1. If correct witness is used, check will always pass

2. Otherwise, check will fail w.h.p.

● For example:
○ Prover picks random 𝜌1, 𝜌2 ∈ 𝔽 and defines A(X) ≔ (𝜌1X + 𝜌2) Z(X) + ∑i∈[n] wi Li(X)

○ Proof reveals A(𝜏), A(𝛿) ⟹ system of 2 linear equations in 2 unknowns
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Attack on Old PLONK – Example

● Statement: “Correctly compute one multiplication”

● We get the following expression for T:

● Which means:

● If we use correct w1, w2, w3, always get correct 𝜌1, 𝜌2 (compare against T2(𝜏))

17
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More in the Full Paper…

● Proof of statistical (computational) ZK in ROM (collision-resistant H)

● Unbounded attack on witness indistinguishability of old PLONK
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Thanks!
Questions?
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