
How (Not) to Simulate PLONK

Marek Sefranek
TU Wien

https://ia.cr/2024/848

https://ia.cr/2024/848

Zero-Knowledge Proof

● Let R be an NP relation and L the corresponding language

2

Prover Verifier

Zero-Knowledge Proof

● Let R be an NP relation and L the corresponding language
● Prove statement x ∈ L without revealing witness w

2

Prover Verifier

x, w x

Zero-Knowledge Proof

● Let R be an NP relation and L the corresponding language
● Prove statement x ∈ L without revealing witness w

2

m1

m2

⋮
Prover Verifier

x, w x

Zero-Knowledge Proof – Properties

● Completeness/Soundness: statement true ⟺ verifier accepts

3

m1

m2

⋮
Prover Verifier

x, w x

Zero-Knowledge Proof – Properties

● Completeness/Soundness: statement true ⟺ verifier accepts
● Zero Knowledge: can efficiently simulate view of verifier only given x

3

m1

m2

⋮
Prover Verifier

x, w x

zk-SNARK
● Zero-Knowledge Succinct Non-interactive ARgument of Knowledge

4

Prover Verifier

x, w x

zk-SNARK
● Zero-Knowledge Succinct Non-interactive ARgument of Knowledge

4

Prover Verifier

x, w x

zk-SNARK
● Zero-Knowledge Succinct Non-interactive ARgument of Knowledge

4

Prover Verifier

x, w x

|𝜋| ≪ |w|

zk-SNARK
● Zero-Knowledge Succinct Non-interactive ARgument of Knowledge
● Need trusted setup: common reference string (CRS)

4

Prover Verifier

CRS

x, w x

zk-SNARK
● Zero-Knowledge Succinct Non-interactive ARgument of Knowledge
● Need trusted setup: common reference string (CRS)
● Zero knowledge: simulator can set up CRS, knowing “trapdoor”

4

Prover Verifier

CRS

x, w x

PLONK

● State-of-the-art zk-SNARK by Gabizon, Williamson & Ciobotaru [GWC19]

5

PLONK

● State-of-the-art zk-SNARK by Gabizon, Williamson & Ciobotaru [GWC19]

● A proof is ≈0.5 kB and can be verified in milliseconds

5

PLONK

● State-of-the-art zk-SNARK by Gabizon, Williamson & Ciobotaru [GWC19]

● A proof is ≈0.5 kB and can be verified in milliseconds

● Universal & updatable structured reference string (SRS)

5

PLONK

● State-of-the-art zk-SNARK by Gabizon, Williamson & Ciobotaru [GWC19]

● A proof is ≈0.5 kB and can be verified in milliseconds

● Universal & updatable structured reference string (SRS)

● Knowledge sound in AGM + ROM (or just ROM [LPS24])

5

PLONK

● State-of-the-art zk-SNARK by Gabizon, Williamson & Ciobotaru [GWC19]

● A proof is ≈0.5 kB and can be verified in milliseconds

● Universal & updatable structured reference string (SRS)

● Knowledge sound in AGM + ROM (or just ROM [LPS24])

● Supports custom gates and lookup gates

5

PLONK

● State-of-the-art zk-SNARK by Gabizon, Williamson & Ciobotaru [GWC19]

● A proof is ≈0.5 kB and can be verified in milliseconds

● Universal & updatable structured reference string (SRS)

● Knowledge sound in AGM + ROM (or just ROM [LPS24])

● Supports custom gates and lookup gates

● Deployed in a variety of real-world projects

5

Main Contribution

● But no proof that PLONK is zero-knowledge!

6

Main Contribution

● But no proof that PLONK is zero-knowledge!

● Found vulnerability in its ZK implementation & proposed fix

6

Main Contribution

● But no proof that PLONK is zero-knowledge!

● Found vulnerability in its ZK implementation & proposed fix

6

● Formal security proof that it now achieves statistical ZK

Zero Knowledge – Definition

● Statistical ZK: there exists a PPT simulator S such that for all
and all adversaries

7

Zero Knowledge – Definition

● Statistical ZK: there exists a PPT simulator S such that for all
and all adversaries

7

Zero Knowledge – Definition

● Statistical ZK: there exists a PPT simulator S such that for all
and all adversaries

7

Zero Knowledge – Definition

● Perfect ZK: there exists a PPT simulator S such that for all
and all adversaries

7

Zero Knowledge – Definition

● Computational ZK: there exists a PPT simulator S such that for all
and all PPT adversaries

7

● Succinctly commit to a polynomial

8

KZG Polynomial Commitment [KZG10]

● Succinctly commit to a polynomial

● Later prove evaluations, i.e., for any point show that

8

KZG Polynomial Commitment [KZG10]

● Succinctly commit to a polynomial

● Later prove evaluations, i.e., for any point show that

● SRS: for uniform “trapdoor” 𝜏 ∈ 𝔽

8

KZG Polynomial Commitment [KZG10]

● Succinctly commit to a polynomial

● Later prove evaluations, i.e., for any point show that

● SRS: for uniform “trapdoor” 𝜏 ∈ 𝔽

● A commitment to a polynomial is

8

KZG Polynomial Commitment [KZG10]

● Succinctly commit to a polynomial

● Later prove evaluations, i.e., for any point show that

● SRS: for uniform “trapdoor” 𝜏 ∈ 𝔽

● A commitment to a polynomial is

8

KZG Polynomial Commitment [KZG10]

PLONK – Simplified Overview

● For Z(X) ≔ (X - ω1)(X - ω2)···(X - ωn), want to show Z(X) | C(X)

9

PLONK – Simplified Overview

● For Z(X) ≔ (X - ω1)(X - ω2)···(X - ωn), want to show Z(X) | C(X)

● Prover commits to C(X) and quotient polynomial T(X) [KZG10]

9

PLONK – Simplified Overview

● For Z(X) ≔ (X - ω1)(X - ω2)···(X - ωn), want to show Z(X) | C(X)

● Prover commits to C(X) and quotient polynomial T(X) [KZG10]

● Its degree is 3n, where n is the number of gates

9

PLONK – Simplified Overview

● For Z(X) ≔ (X - ω1)(X - ω2)···(X - ωn), want to show Z(X) | C(X)

● Prover commits to C(X) and quotient polynomial T(X) [KZG10]

● Its degree is 3n, where n is the number of gates

● Other polynomials have degree n ⟹ SRS has to be 3x as long

9

PLONK – Simplified Overview

● For Z(X) ≔ (X - ω1)(X - ω2)···(X - ωn), want to show Z(X) | C(X)

● Prover commits to C(X) and quotient polynomial T(X) [KZG10]

● Its degree is 3n, where n is the number of gates

● Other polynomials have degree n ⟹ SRS has to be 3x as long

● To avoid this, PLONK splits T into 3 degree-n polynomials T1, T2, T3 s.t.

T(X) = T1(X) + X
n T2(X) + X

2n T3(X)

9

PLONK – Proof

10

PLONK – Proof

10

KZG commitments to
witness polynomials

PLONK – Proof

10

KZG commitments to
witness polynomials

KZG commitments to
split quotient polynomial

PLONK – Proof

10

KZG commitments to
witness polynomials

KZG commitments to
split quotient polynomial

PLONK – Proof

10

KZG commitments to
witness polynomials

KZG commitments to
split quotient polynomial Batched KZG

opening proofs

PLONK – Proof

10

KZG commitments to
witness polynomials

Witness polynomials
evaluated at challenge

KZG commitments to
split quotient polynomial Batched KZG

opening proofs

PLONK – Proof

10

KZG commitments to
witness polynomials

Witness polynomials
evaluated at challenge

Evaluations of public
polynomials

KZG commitments to
split quotient polynomial Batched KZG

opening proofs

PLONK’s ZK Technique

● Let and vanishing polynomial

11

PLONK’s ZK Technique

● Let and vanishing polynomial

● Take any polynomial

11

PLONK’s ZK Technique

● Let and vanishing polynomial

● Take any polynomial

● For a random degree-d polynomial , define

11

PLONK’s ZK Technique

● Let and vanishing polynomial

● Take any polynomial

● For a random degree-d polynomial , define

● Then evaluating at any d - 1 points x1, …, xd-1 ∈ 𝔽 ∖ S results in uniform distr.

11

PLONK’s ZK Technique

● Let and vanishing polynomial

● Take any polynomial

● For a random degree-d polynomial , define

● Then evaluating at any d - 1 points x1, …, xd-1 ∈ 𝔽 ∖ S results in uniform distr.

● Note that if and only if

11

PLONK’s ZK Technique Visualized

12

y

x0

PLONK’s ZK Technique Visualized

12

y

x0

S

PLONK’s ZK Technique Visualized

12

y

x0

S

PLONK’s ZK Technique Visualized

12

y

x0

S

PLONK’s ZK Technique Visualized

12

y

x0

S

PLONK’s ZK Technique Visualized

12

y

x0

S

PLONK’s ZK Technique in Action

● Prover randomizes witness polynomials A, B, C, Φ

13

PLONK’s ZK Technique in Action

● Prover randomizes witness polynomials A, B, C, Φ

● Pick random 𝜌1, 𝜌2 ∈ 𝔽 and define A(X) ≔ (𝜌1X + 𝜌2) Z(X) + ∑i∈[n] wi Li(X)

13

PLONK’s ZK Technique in Action

● Prover randomizes witness polynomials A, B, C, Φ

● Pick random 𝜌1, 𝜌2 ∈ 𝔽 and define A(X) ≔ (𝜌1X + 𝜌2) Z(X) + ∑i∈[n] wi Li(X)

● Evaluations in proof are now independent of witness!

13

PLONK’s ZK Technique in Action

● Prover randomizes witness polynomials A, B, C, Φ

● Pick random 𝜌1, 𝜌2 ∈ 𝔽 and define A(X) ≔ (𝜌1X + 𝜌2) Z(X) + ∑i∈[n] wi Li(X)

● Evaluations in proof are now independent of witness!

● Simulator: can just pick random values

13

Zero Knowledge Vulnerability

● Without splitting T(X):

○ Can be simulated as T(𝜏) can be computed given the KZG trapdoor 𝜏

○ Proof independent of witness

14

Zero Knowledge Vulnerability

● Without splitting T(X):

○ Can be simulated as T(𝜏) can be computed given the KZG trapdoor 𝜏

○ Proof independent of witness

● With the optimization:

○ T1, T2, T3 leak too much information about T(X)

○ Proof no longer independent of witness!

14

● Randomize T1, T2, T3 so they are uniform conditioned on satisfying

T(X) = T1(X) + r1 X
n + X

n (T2(X) - r1 + r2 X
n) + X

2n (T3(X) - r2)

Zero Knowledge Fix

15

● Randomize T1, T2, T3 so they are uniform conditioned on satisfying

T(X) = T1(X) + r1 X
n + X

n (T2(X) - r1 + r2 X
n) + X

2n (T3(X) - r2)

for randomly chosen r1, r2 ∈ 𝔽

Zero Knowledge Fix

15

Zero Knowledge Fix

15

● Randomize T1, T2, T3 so they are uniform conditioned on satisfying

T(X) = T1(X) + r1 X
n + X

n (T2(X) - r1 + r2 X
n) + X

2n (T3(X) - r2)

for randomly chosen r1, r2 ∈ 𝔽

Zero Knowledge Fix

15

● Randomize T1, T2, T3 so they are uniform conditioned on satisfying

T(X) = T1(X) + r1 X
n + X

n (T2(X) - r1 + r2 X
n) + X

2n (T3(X) - r2)

for randomly chosen r1, r2 ∈ 𝔽

● Randomize T1, T2, T3 so they are uniform conditioned on satisfying

T(X) = T1(X) + r1 X
n + X

n (T2(X) - r1 + r2 X
n) + X

2n (T3(X) - r2)

for randomly chosen r1, r2 ∈ 𝔽

● Can now be simulated as the value T(𝜏) can be:

1. Choose uniform values for T2(𝜏) and T3(𝜏)

2. Set T1(𝜏) ≔ T(𝜏) - 𝜏n T2(𝜏) - 𝜏 2n T3(𝜏)

Zero Knowledge Fix

15

● Randomize T1, T2, T3 so they are uniform conditioned on satisfying

T(X) = T1(X) + r1 X
n + X

n (T2(X) - r1 + r2 X
n) + X

2n (T3(X) - r2)

for randomly chosen r1, r2 ∈ 𝔽

● Can now be simulated as the value T(𝜏) can be:

1. Choose uniform values for T2(𝜏) and T3(𝜏)

2. Set T1(𝜏) ≔ T(𝜏) - 𝜏n T2(𝜏) - 𝜏 2n T3(𝜏)

● Preserves knowledge soundness as verifier remains the same!

Zero Knowledge Fix

15

Attack on Old PLONK

● “Old PLONK not stat. witness indistinguishable” ⟹ “not stat. ZK”

16

Attack on Old PLONK

● “Old PLONK not stat. witness indistinguishable” ⟹ “not stat. ZK”

16

Attack on Old PLONK

● “Old PLONK not stat. witness indistinguishable” ⟹ “not stat. ZK”

● Idea: Solve system of linear equations to recover blinding scalars used by
prover to mask witness polynomials

16

Attack on Old PLONK

● “Old PLONK not stat. witness indistinguishable” ⟹ “not stat. ZK”

● Idea: Solve system of linear equations to recover blinding scalars used by
prover to mask witness polynomials

● Compare against resulting values of T1(𝜏), T2(𝜏), T3(𝜏)
1. If correct witness is used, check will always pass

2. Otherwise, check will fail w.h.p.

16

Attack on Old PLONK

● “Old PLONK not stat. witness indistinguishable” ⟹ “not stat. ZK”

● Idea: Solve system of linear equations to recover blinding scalars used by
prover to mask witness polynomials

● Compare against resulting values of T1(𝜏), T2(𝜏), T3(𝜏)
1. If correct witness is used, check will always pass

2. Otherwise, check will fail w.h.p.

● For example:
○ Prover picks random 𝜌1, 𝜌2 ∈ 𝔽 and defines A(X) ≔ (𝜌1X + 𝜌2) Z(X) + ∑i∈[n] wi Li(X)

○ Proof reveals A(𝜏), A(𝛿) ⟹ system of 2 linear equations in 2 unknowns

16

Attack on Old PLONK – Example

● Statement: “Correctly compute one multiplication”

17

⨉
w1 w2

w3

Attack on Old PLONK – Example

● Statement: “Correctly compute one multiplication”

● We get the following expression for T:

17

⨉
w1 w2

w3

Attack on Old PLONK – Example

● Statement: “Correctly compute one multiplication”

● We get the following expression for T:

● Which means:

17

⨉
w1 w2

w3

Attack on Old PLONK – Example

● Statement: “Correctly compute one multiplication”

● We get the following expression for T:

● Which means:

17

⨉
w1 w2

w3

Attack on Old PLONK – Example

● Statement: “Correctly compute one multiplication”

● We get the following expression for T:

● Which means:

● If we use correct w1, w2, w3, always get correct 𝜌1, 𝜌2 (compare against T2(𝜏))

17

⨉
w1 w2

w3

More in the Full Paper…

● Proof of statistical (computational) ZK in ROM (collision-resistant H)

● Unbounded attack on witness indistinguishability of old PLONK

18

https://ia.cr/2024/848

https://ia.cr/2024/848

More in the Full Paper…

● Proof of statistical (computational) ZK in ROM (collision-resistant H)

● Unbounded attack on witness indistinguishability of old PLONK

18

Thanks!
Questions?

https://ia.cr/2024/848

https://ia.cr/2024/848

References

19

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations
over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge.
Cryptology ePrint Archive, Paper 2019/953, 2019. https://eprint.iacr.org/2019/953.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-Size
Commitments to Polynomials and Their Applications. In Advances in Cryptology –
ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, 2010.
https://doi.org/10.1007/978-3-642-17373-8_11.

[LPS24] Helger Lipmaa, Roberto Parisella, and Janno Siim. On Knowledge-Soundness of
Plonk in ROM from Falsifiable Assumptions. Cryptology ePrint Archive, Paper
2024/994, 2024. https://eprint.iacr.org/2024/994.

https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-17373-8_11
https://eprint.iacr.org/2024/994

