Verifying Global Two-Safety Properties in **Neural Networks with Confidence**

Anagha Athavale

Maria Christakis

Dejan Nickovic

Ezio Bartocci

Matteo Maffei

Georg Weissenbacher <u>georg.wesissenbacher@tuwien.ac.at</u>

36th International Conference on Computer Aided Verification 27 July 2024

Why is verification of NNs important?

- Safety critical applications
 - Safety is a concern
 - Lives /money/ personal information at risk
- Applications such as:
 - Medical diagnosis
 - Self driving vehicles
 - Financial systems

Why is verification of NNs important?

"panda" 57.7% confidence

- By adding ϵ (an imperceptibly small vector) to the input vector, classification changes with a high confidence!

Source: Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial example

"nematode" 8.2% confidence

• Szegedy et al. (2013), Goodfellow et al. (2014) observe a curious phenomenon

Why is verification of NNs important?

- Safety critical applications
 - Safety is a concern
 - Lives /money/ personal information at risk
- Applications such as:
 - Medical diagnosis
 - Self driving vehicles
 - Financial systems

Verifying Global Two-Safety Properties in Neural Networks with Confidence

Feed-Forward Neural Networks

- Neural network $f : \mathbb{R}^n \to \mathbb{R}^m$ modeled as a DAG, G = (V, E)
 - V: finite set of nodes
 - $E \subseteq V \times V$: finite set of edges
- Nodes V partitioned into l layers V^i with $1 \le i \le l$
 - V^1 : input layer
 - V^2, \ldots, V^{l-1} : hidden layers

Feed-Forward Neural Networks

Activation Functions

Activation functions help introduce non-linearity which helps model complex functions, ones that cannot be modeled with plain linear regression

ReLU (Rectified Linear Unit)

- Most used activation function
- ReLU(x) = max(0,x)

Activation Functions

Sigmoid

•The output of sigmoid lies between 0 and 1

•Therefore used for models where a probability needs to be predicted as the output

Sigmoid (z) = $1/(1+e^{-z})$)

Source: towardsdatascience.com

Activation Functions

Softmax

- Softmax turns a vector of K real values into a vector of K real values that sum to 1
- It is used to obtain the confidence scores for NN output labels

$$Softmax(z) = \frac{e^{z_i}}{\sum_{j=1}^N e^{z_j}}$$

Confidence score

- In neural networks used as classifiers, input \vec{x} mapped to one of m classes
- Final layer typically employs a softmax function to represent output as normalized probabilities
- We use the term confidence, conf(f(x))to refer to the highest probability

$conf(f(\vec{x})) = max(out(v_{l,1}), \dots, out(v_{l,n}))$

Verifying Global Two-Safety Properties in Neural Networks with Confidence

State-of-art

Local robustness - NN's ability to withstand adversarial inputs in the vicinity of a specific point in the input space

"Small" changes in input -> "Small" changes in output

$\|\vec{x} - \vec{x_0}\| \le \epsilon \to class(f(\vec{x})) = class(f(\vec{x_0}))$

This is called local robustness because we are checking for perturbations in an ϵ -radius circle around a fixed $\overrightarrow{x_o}$

State-of-art

- neural network along with the local robustness property that needs to be verified
- and a set of non-linear constraints defining activation functions
- The property is a set of constraints on the network's inputs and outputs
- assignment that satisfies all constraints at the same time
- solver to find a satisfying assignment

• SMT-based NN verification tools, such as Marabou [M1], take a fully-connected feed-forward

•Network encoded as a set of linear constraints representing weighted sum of neurons' outputs

• The neurons are treated as variables - the verification problem thus involves identifying a variable

Pass the constraints corresponding to the NN and the property (in negated form) to an SMT

Local robustness - Limitations

- Local robustness is defined only for a specific input
- Consequently, it does not provide any guarantees for any other input
- It follows that the robustness of the entire neural network cannot be assessed with local robustness only

Narrow, limited approach

Need a broader perspective when certifying NNs - one that covers the entire input space

Global robustness -General Definition

- Global robustness is not limited to analyzing robustness around a fixed point
- points
- global robustness

$$\forall \vec{x}, \vec{x'} \| \vec{x} - \vec{x'} \| \le \epsilon \rightarrow class(f(\vec{x})) = class(f(\vec{x'}))$$

• It is a measure of a NN's robustness over the entire input space, rather than specific

• The local robustness definition that we saw can be generalized over all inputs to get

Verifying Global Two-Safety Properties in Neural Networks with Confidence

Global robustness -Limitation

$\forall \vec{x}, \vec{x'} \| \vec{x} - \vec{x'} \| \le \epsilon \rightarrow class(f(\vec{x})) = class(f(\vec{x'}))$

- models that map all inputs to a single class
- NNs

This definition of global robustness, however, can only be satisfied by trivial

• This needs to be relaxed in order to make it practically useful for verification of

Confidence-based global robustness

- At decision boundaries, the confidence for one label gradually decreases whereas the confidence in another one gradually increases
- At transition point, confidences in both labels lower and close to each other
- Hence, we do not consider pairs of inputs whose labels differ, but with a low level of confidence, to be counterexamples to robustness
- The idea is to compare all input pairs which are sufficiently close and for which at least one of them yields a high-confidence classification

Global Fairness

- CertiFair [C1] and Fairify [F1] address a similar problem, which arises in the context of fairness, by partitioning the input space based on categorical features
- In general, if the input to a decision-making neural network comprises of certain sensitive attributes, say age or gender, the network is said to be fair if the sensitive attributes do not influence its decision
- For example, a hiring algorithm that discriminates against certain groups of job applicants based on their race or gender could perpetuate existing biases and inequalities in the workplace

$$\forall \vec{x} = (x_s, \vec{x_n}), \vec{x'} = (x'_s, \vec{x'_n}). \quad ||\vec{x_n} - \vec{x'_n}|| \le \epsilon \quad \land (x_s \ne x'_s) \rightarrow class(f(\vec{x})) = class(f(\vec{x'}))$$

where x_s and x_{n} sensitive and non-sensitive attributes of \vec{x} , respectively YSEC

Global robustness and fairness are hyperproperties

- Observe that global robustness and fairness are hyper properties
- Properties capture relationships between multiple execution traces are known as hyperproperties
- Traditional properties, in contrast, are evaluated over individual traces
- A hyperproperty on the other hand quantifies over more than one trace

$$\forall \vec{x} . conf(f(\vec{x})) \ge \kappa \quad \text{Traditional property}$$

$$\forall \vec{x}, \vec{x'} . \frac{f(\vec{x})_i - f(\vec{x'})_i}{||\vec{x} - \vec{x'}||} \le \kappa \quad \text{Hyperpropert}$$

Global robustness and fairness are hyperproperties

Observe that global robustness and fairness are hyperproperties.

based 2-safety property that unifies global robustness and fairness for DNNs

$$(\vec{x_n}), \vec{x'} = (x'_s, \vec{x'_n}), ||\vec{x_n} - \vec{x'_n}|| \le \epsilon \land (x_s \ne x'_s) - \vec{x}) = class(f(\vec{x'}))$$

where x_s and x_{n} sensitive and non-sensitive attributes of \vec{x} , respectively

We used this striking similarity of the two properties to formalize the first definition of confidence-

Confidence-based global 2-safety -Definition

• A model f is said to be globally 2-safe for confidence $\kappa > 0$ and tolerance ϵ iff:

 $\forall \vec{x}, \vec{x}'. cond(\vec{x}, \vec{x}', \vec{\epsilon}) \land conf(f(\vec{x}))$

For confidence-based global robustness:

$$cond(\vec{x}, \vec{x}', \vec{\epsilon}) = \bigwedge_{i \in [1,n]} d(x_i, x_i') \le \epsilon_i$$

$$> \kappa \implies class(f(\vec{x})) = class(f(\vec{x}'))$$

For confidence-based global fairness:

$$cond(\vec{x}, \vec{x}', \vec{\epsilon}) = \bigwedge_{x_i \in \overrightarrow{x_s}} d(x_i, x_i') > 0 \quad \wedge \bigwedge_{x_i \in \overrightarrow{x_n}} d(x_i, x_i') \le 0$$

Verifying Global Two-Safety Properties in Neural Networks with Confidence

Confidence-based global 2-safety -Challenges

- We have now crossed the first hurdle by defining the property that we want to check
- However, there are several challenges:
 - 1. How to verify a 2-safety property?
 - 2. The presence of confidence in the definition of the property means we have to deal with non-linear softmax

Verifying Global Two-Safety Properties in Neural Networks with Confidence

1. How to verify a 2-safety property?

Self-composition

- 2-safety properties can be verified using selfcomposition
- The idea is to compose the program with itself and relate the two executions

 $f(\vec{x}) \times f(\vec{x'}) = \lambda(\vec{x}, \vec{x'}) \cdot (f(\vec{x}), f(\vec{x'}))$ where, $(\vec{x}, \vec{x'})$: concatenation of vectors \vec{x} and $\vec{x'}$ $\lambda \vec{x} \cdot f(\vec{x})$: lambda term that binds \vec{x} in $f(\vec{x})$

• A counterexample to a 2-safety property comprises of a pair of traces

Encoding 2-safety as Product Neural Network

- Compose a copy of the neural network with itself to get a product neural network
- The self-composed neural network consists of two copies of the original neural network, each with its own copy of the variables
- To encode the self-composition, we duplicate all variables and constraints by introducing primed counterparts in'_{i,j} and out'_{i,j} for in_{i,j} and out_{i,j}
- Checking 2-safety then reduces to checking an ordinary safety property
- A product network allows the reduction of a 2-safety to a trace property, a problem, which can be solved using an existing standard verification technique

2. How to deal with non-linear softmax to model confidence

Confidence - 2-step approach

Step 1

- To model confidence, we needed a way to find an abstraction of the softmax, which is amenable to automated verification
- Our approximation of the softmax involves a 2-step approach
- In the first part of the approximation, we express softmax in terms of log-sum-exp (LSE) and sigmoid

Also, from [P1] we know that:

• We use these equations to express softmax in terms of sigmoid and max

- $softmax(\vec{z}_i) = sigmoid(z_i LSE_{1_{i \neq i}}^n(z_j))$
- $max_1^n(z_i) \le LSE_1^n(z_i) \le max_1^n(z_i) + log(n)$

Confidence - 2-step approach

Step 2

- We still do not know how to deal with sigmoid
- We approximate sigmoid as a piece-wise linear function using the Remez exchange algorithm [R1].
- Remez algorithm iterative algorithm that finds simpler approximations to functions
- Set error to 0.005 -> obtain 35 segments -> encode each segment as an equation and represent using variable q_i
- Select applicable segment

Soundness

- For our confidence-based 2-safety property, our analysis provides a soundness guarantee
- This means that whenever the analysis reports that the property holds, then the property also holds true in the concrete execution

"

Theorem 3. (Soundness) Let f and \hat{f} be the original neural network and overapproximated neural network, respectively. Let $b_{n,\delta}$ be the error bound of the approximated softmax ($b_{n,\delta} = \frac{n-2}{(\sqrt{n-1}+1)^2} + 2\delta$ (see Theorem [1])). Then we have the following soundness guarantee: Whenever the approximated neural network is 2safe for $\operatorname{conf}(\hat{f}(\vec{x})) > (\kappa - b_{n,\delta})$, the real neural network is 2-safe for $\operatorname{conf}(f(\vec{x})) > \frac{1}{2}$. Formally:

$$\begin{pmatrix} \forall \vec{x}, \vec{x'}. \ \operatorname{cond}(\vec{x}, \vec{x'}, \vec{\epsilon}) \wedge \operatorname{conf}(\hat{f}(\vec{x})) > (\kappa - b_{n,\delta}) \\ \implies \operatorname{class}(\hat{f}(\vec{x})) = \operatorname{class}(\hat{f}(\vec{x'})) \end{pmatrix} \Longrightarrow \\ \begin{pmatrix} \forall \vec{x}, \vec{x'}. \ \operatorname{cond}(\vec{x}, \vec{x'}, \vec{\epsilon}) \wedge \operatorname{conf}(f(\vec{x})) > \kappa \\ \implies \operatorname{class}(f(\vec{x})) = \operatorname{class}(f(\vec{x'})) \end{pmatrix}, \ with \ \operatorname{conf}(\hat{f}(\vec{x})) > \frac{1}{2} \end{cases}$$

Implementation

- Our method is applicable to any off-the-shelf static analysis tool
- As a proof of concept, we implement it on the state-of-the-art NN verification tool Marabou
- Simplex-based, linear programming verification tool
- Capable of addressing queries about network's properties (such as local robustness) by encoding them into constraint satisfaction problem
- Can only handle traditional safety properties

Experimental evaluation -Confidence-based global robustness

Tl

WIEN

S&P

Security & Privacy

COMPAS dataset

Experimental evaluation -Confidence-based global fairness

Dataset	Sensitive attribute	Confidence threshold	Result	Time taken
German credit	Gender	0.5	unsat	10.232 sec
German credit	Age	0.5	unsat	$11.478 \sec$
COMPAS	Gender	0.5	sat	$7.423 \sec$
COMPAS	Ethnicity	0.5	sat	18.293 sec
COMPAS	Ethnicity	0.99	sat	$25.846 \sec$
COMPAS	Ethnicity	0.999	unsat	$171~{\rm min}~15~{\rm sec}$

Global fairness on German credit/COMPAS datasets for various criteria

Exploring the space of property parameters

- We combined our method with binary search, to synthesize the minimum confidence for which the DNN is globally robust or fair
- We perform the binary search:
 - Start with confidence 0.5
 - If the model is unsat, done!
 - Else, check for confidence mid = (0.5 + 1)/2, and continue in this way till we find the minimum confidence accurate to the nearest 0.05
- For instance, binary search combined with our method, on German credit gave us 0.75 (in 45 seconds) to be the minimum confidence for which the DNN is globally robust

Current and Future Work

- Scalablility
 - Pruning
 - Knowledge distillation
- Tighter softmax approximation
- A hybrid approach that leverages the strengths of both testing and verification
- Property-based testing for our 2-safety confidence based property

Verifying Global Two-Safety Properties in Neural Networks with Confidence

References

[C1] Khedr, H., & Shoukry, Y. (2023, June). Certifair: A framework for certified global fairness of neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 7, pp. 8237-8245)Khedr, H., & Shoukry, Y. (2023, June). Certifair: A framework for certified global fairness of neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 7, pp. 8237-8245).

[F1] Biswas, S., & Rajan, H. (2023, May). Fairify: Fairness verification of neural networks. In 2023 IEEE/ ACM 45th International Conference on Software Engineering (ICSE) (pp. 1546-1558). IEEE.

[M1] Katz, G., Huang, D. A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., ... & Barrett, C. (2019). The marabou framework for verification and analysis of deep neural networks. In Computer Aided Verification: 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I 31 (pp. 443-452). Springer International Publishing.

[R1] Chalmers, B. L. (1976). The Remez exchange algorithm for approximation with linear restrictions. Transactions of the American Mathematical Society, 223, 103-131.

References

[G1] Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples.

[P1] Pant, Y. V., Abbas, H., & Mangharam, R. (2017, August). Smooth operator: Control using the smooth robustness of temporal logic. In *2017 IEEE Conference on Control Technology and Applications (CCTA)* (pp. 1235-1240). IEEE.

[SC1] Chen, Y., Wang, S., Qin, Y., Liao, X., Jana, S., & Wagner, D. (2021, November). Learning security classifiers with verified global robustness properties. In *Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security* (pp. 477-494).

Verifying Global Two-Safety Properties in Neural Networks with Confidence

Thank You! Questions?

Anagha Athavale TU Wien and AIT Austrian Institute of Technology anagha.athavale@tuwien.ac.at

36