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Verifying Global Two-Safety Properties in Neural Networks with Confidence 

Why is verification of NNs important?

• Safety critical applications 


• Safety is a concern


• Lives /money/ personal information at risk


• Applications such as:


• Medical diagnosis


• Self driving vehicles


• Financial systems

 Cannot trust ML-based 
systems where cost of error 

to be paid is huge!
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Source: Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014).

Explaining and harnessing adversarial examples.

• Szegedy et al. (2013), Goodfellow et al. (2014) observe a curious phenomenon

• By adding  (an imperceptibly small vector) to the input vector, classification 

changes with a high confidence!
ϵ

Why is verification of NNs important?
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• Safety critical applications 


• Safety is a concern


• Lives /money/ personal information at risk


• Applications such as:


• Medical diagnosis


• Self driving vehicles


• Financial systems

 Cannot trust 
ML-based 

systems where cost of error 
to be paid is huge!
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Solution - 
Verification techniques with 

formal guarantees

Why is verification of NNs important?
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Feed-Forward Neural Networks

• Neural network   modeled as a DAG, 



•  : finite set of nodes


•  : finite set of edges


• Nodes V partitioned into  layers  with 


• : input layer 


• : hidden layers


• : output layer

f : ℝn → ℝm

G = (V, E)

V

E ⊆ V × V

l Vi 1 ≤ i ≤ l

V1

V2, . . . , Vl−1

Vl
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Input layer Output layerHidden layers

INPUT 
SPACE 

Xn

OUTPUT 
SPACE 

Ym



Feed-Forward Neural Networks
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Activation Functions
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ReLU (Rectified Linear Unit)


• Most used activation function 


• ReLU(x) = max(0,x)

Activation functions help introduce non-linearity 
which helps model complex functions, ones that 
cannot be modeled with plain linear regression



Verifying Global Two-Safety Properties in Neural Networks with Confidence 

Activation Functions
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Sigmoid


•The output of sigmoid lies between 0 and 1


•Therefore used for models where 

a probability needs to be predicted as the 
output


Sigmoid (z) = 1/(1+e^(-z) )
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Activation Functions
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Softmax


• Softmax turns a vector of K real values into 
a vector of K real values that sum to 1


• It is used to obtain the confidence scores 
for NN output labels



Softmax(z) =
ezi

∑N
j=1 ezj

Source: medium.com
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• In neural networks used as classifiers, 
input  mapped to one of m classes


• Final layer typically employs a softmax 
function to represent output as 
normalized probabilities 


• We use the term confidence,  
to refer to the highest probability 

⃗x

conf( f( ⃗x))

conf( f( ⃗x)) = max(out(vl,1), . . . , out(vl,n))

Confidence score
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State-of-art 

∥ ⃗x − ⃗x0∥ ≤ ϵ class( f( ⃗x)) = class( f( ⃗x0))→

This is called local robustness because we 
are checking for perturbations in an -radius 
circle around a fixed 

ϵ
⃗xo

Local robustness - NN’s ability to 
withstand adversarial inputs in the 
vicinity of a specific point in the 
input space


“Small” changes in input -> “Small” 
changes in output
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State-of-art 

•SMT-based NN verification tools, such as Marabou [M1], take a fully-connected feed-forward 
neural network along with the local robustness property that needs to be verified


•Network encoded as a set of linear constraints representing weighted sum of neurons’ outputs 
and a set of non-linear constraints defining activation functions


•The property is a set of constraints on the network’s inputs and outputs


•The neurons are treated as variables - the verification problem thus involves identifying a variable 
assignment that satisfies all constraints at the same time


•Pass the constraints corresponding to the NN and the property (in negated form) to an SMT 
solver to find a satisfying assignment
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• Local robustness is defined only for a specific input


• Consequently, it does not provide any guarantees for any 
other input


• It follows that the robustness of the entire neural network 
cannot be assessed with local robustness only

Narrow, limited approach 

Need a broader perspective when 
certifying NNs - one that covers the entire 

input space

Local robustness - Limitations
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• Global robustness is not limited to analyzing robustness around a fixed point


• It is a measure of a NN’s robustness over the entire input space, rather than specific 
points


• The local robustness definition that we saw can be generalized over all inputs to get 
global robustness 


    
∀ ⃗x, ⃗x′ ∥ ⃗x − ⃗x′ ∥ ≤ ϵ → class( f( ⃗x)) = class( f( ⃗x′ ))

Global robustness - 
General Definition
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Global robustness -
Limitation

   


• This definition of global robustness, however, can only be satisfied by trivial 
models that map all inputs to a single class


• This needs to be relaxed in order to make it practically useful for verification of 
NNs

∀ ⃗x, ⃗x′ ∥ ⃗x − ⃗x′ ∥ ≤ ϵ → class( f( ⃗x)) = class( f( ⃗x′ ))
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Confidence-based global robustness

• At decision boundaries, the confidence for one label gradually 
decreases whereas the confidence in another one gradually 
increases 

• At transition point, confidences in both labels lower and close to 
each other 

• Hence, we do not consider pairs of inputs whose labels differ, but 
with a low level of confidence, to be counterexamples to robustness 

• The idea is to compare all input pairs which are sufficiently close 
and for which at least one of them yields a high-confidence 
classification
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Global Fairness

• CertiFair [C1] and Fairify [F1]  address a similar problem, which arises in the context of fairness, 
by partitioning the input space based on categorical features


• In general, if the input to a decision-making neural network comprises of certain sensitive 
attributes, say age or gender, the network is said to be fair if the sensitive attributes do not 
influence its decision


• For example, a hiring algorithm that discriminates against certain groups of job applicants based 
on their race or gender could perpetuate existing biases and inequalities in the workplace 

17

    


where  and : sensitive and non-sensitive attributes of , respectively

∀ ⃗x = (xs, ⃗xn), ⃗x′ = (x′ s, ⃗x′ n) . | | ⃗xn − ⃗x′ n | | ≤ ϵ ∧ (xs ≠ x′ s) → class( f( ⃗x)) = class( f( ⃗x′ ))

xs xn ⃗x



Verifying Global Two-Safety Properties in Neural Networks with Confidence 

Global robustness and fairness are 
hyperproperties

• Observe that global robustness and fairness are 
hyper properties


• Properties capture relationships between multiple 
execution traces are known as hyperproperties


• Traditional properties, in contrast, are evaluated 
over individual traces


• A hyperproperty on the other hand quantifies over 
more than one trace


∀ ⃗x . conf( f( ⃗x)) ≥ κ

∀ ⃗x, ⃗x′ .
f( ⃗x)i − f( ⃗x′ )i

|| ⃗x − ⃗x′ ||
≤ κ

Traditional property

Hyperproperty
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Global robustness and fairness are 
hyperproperties

• Observe that global robustness and fairness are hyperproperties

Global robustness 

  ∀ ⃗x, ⃗x′ ∥ ⃗x − ⃗x∥ ≤ ϵ →
class( f( ⃗x)) = class( f( ⃗x′ ))

Global fairness


    





where  and : sensitive and non-sensitive attributes of , respectively

∀ ⃗x = (xs, ⃗xn), ⃗x′ = (x′ s, ⃗x′ n) . | | ⃗xn − ⃗x′ n | | ≤ ϵ ∧ (xs ≠ x′ s) →

class( f( ⃗x)) = class( f( ⃗x′ ))

xs xn ⃗x

• We used this striking similarity of the two properties to formalize the first definition of confidence-
based 2-safety property that unifies global robustness and fairness for DNNs
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Confidence-based global 2-safety - 
Definition

• A model f is said to be globally 2-safe for confidence κ > 0 and tolerance  iff:ϵ


∀ ⃗x, ⃗x′ . cond( ⃗x, ⃗x′ , ⃗ϵ) ∧ conf( f( ⃗x)) > κ ⟹ class( f( ⃗x)) = class( f( ⃗x′ ))

For confidence-based global robustness:



cond( ⃗x, ⃗x′ , ⃗ϵ) = ⋀
i∈[1,n]

d(xi, x′ i) ≤ ϵi

For confidence-based global fairness:


cond( ⃗x, ⃗x′ , ⃗ϵ) = ⋀
xi∈ ⃗xs

d(xi, x′ i) > 0 ∧ ⋀
xi∈ ⃗xn

d(xi, x′ i) ≤ ϵi

20
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• We have now crossed the first hurdle by defining the property that we want to 
check

• However, there are several challenges:

1.How to verify a 2-safety property?

2.The presence of confidence in the definition of the property means we 
have to deal with non-linear softmax

Confidence-based global 2-safety - 
Challenges
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1. How to verify a 2-safety property?
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Self-composition

23
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• 2-safety properties can be verified using self-
composition


• The idea is to compose the program with itself 
and relate the two executions




where, : concatenation of vectors  and 


: lambda term that binds  in 


• A counterexample to a 2-safety property 
comprises of a pair of traces 

f( ⃗x) × f( ⃗x′ ) = λ( ⃗x, ⃗x′ ) . ( f( ⃗x), f( ⃗x′ ))
( ⃗x, ⃗x′ ) ⃗x ⃗x′ 

λ ⃗x . f( ⃗x) ⃗x f( ⃗x)
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• Compose a copy of the neural network with itself to get a 
product neural network

• The self-composed neural network consists of two copies of the 
original neural network, each with its own copy of the variables

• To encode the self-composition, we duplicate all variables and 
constraints by introducing primed counterparts in’i,j and out′i,j for 
ini,j and outi,j

• Checking 2-safety then reduces to checking an ordinary safety 
property

• A product network allows the reduction of a 2-safety to a trace 
property, a problem, which can be solved using an existing 
standard verification technique

•

24

Encoding 2-safety as Product Neural Network



2. How to deal with non-linear softmax 
to model confidence  
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Confidence -  2-step approach

Step 1

• To model confidence, we needed a way to find an abstraction of the softmax, which is amenable to 
automated verification


• Our approximation of the softmax involves a 2-step approach


• In the first part of the approximation, we express softmax in terms of log-sum-exp (LSE) and sigmoid 


      

• Also, from [P1] we know that:


 


• We use these equations to express softmax in terms of sigmoid and max


softmax( ⃗zi) = sigmoid(zi − LSEn
1 j≠i

(zj))

maxn
1(zi) ≤ LSEn

1(zi) ≤ maxn
1(zi) + log(n)
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Confidence -  2-step approach

Step 2

• We still do not know how to deal with sigmoid

• We approximate sigmoid as a piece-wise linear function using the 
Remez exchange algorithm [R1]. 

• Remez algorithm - iterative algorithm that finds simpler 
approximations to functions

• Set error to 0.005 -> obtain 35 segments -> encode each segment as 
an equation and represent using variable qj

• Select applicable segment
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• For our confidence-based 2-safety property, 
our analysis provides a soundness 
guarantee

•  This means that whenever the analysis 
reports that the property holds, then the 
property also holds true in the concrete 
execution

                    

Soundness

 ’’

 “
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Implementation

• Our method is applicable to any off-the-shelf static analysis tool 

• As a proof of concept, we implement it on the state-of-the-art NN verification tool - Marabou 

• Simplex-based, linear programming verification tool 

• Capable of addressing queries about network’s properties (such as local robustness) — by 
encoding them into constraint satisfaction problem 

• Can only handle traditional safety properties 
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Experimental evaluation - 
Confidence-based global robustness
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Global fairness on German credit/COMPAS datasets for various criteria

31

Experimental evaluation - 
Confidence-based global fairness
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• We combined our method with binary search, to synthesize the minimum confidence for 
which the DNN is globally robust or fair

• We perform the binary search: 
• Start with confidence 0.5
• If the model is unsat, done!
• Else, check for confidence mid = (0.5 + 1)/2, and continue in this way till we find the 

minimum confidence accurate to the nearest 0.05

• For instance, binary search combined with our method, on German credit gave us 0.75 
(in 45 seconds) to be the minimum confidence for which the DNN is globally robust

Exploring the space of property parameters
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Current and Future Work

• Scalablility
• Pruning 
• Knowledge distillation

• Tighter softmax approximation

• A hybrid approach that leverages the strengths of both testing and verification 

• Property-based testing for our 2-safety confidence based property
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