
Wappler:
Sound Reachability Analysis for WebAssembly

Markus Scherer · Jeppe Fredsgaard Blaabjerg ·
Magdalena Solitro · Alexander Sjösten ·
Matteo Maffei

CSF 2024
July 10, 2024

1



WebAssembly

2



WebAssembly

2



WebAssembly

2



WebAssembly

2



Motivation

static const char* trusted = "TRUSTED";
char game_state[64] = ...;
extern void eval(const char*);

void update_game_state(int x, int y, char c) {
if (x < 8 && y < 8) {
game_state[y * 8 + x] = c;

}
eval(TRUSTED);

}

3



Motivation

not meant to be modified
static const char* trusted = "TRUSTED";
char game_state[64] = ...;
extern void eval(const char*);

void update_game_state(int x, int y, char c) {
if (x < 8 && y < 8) {
game_state[y * 8 + x] = c;

}
eval(TRUSTED);

}

3



Motivation

assumes trusted input

static const char* trusted = "TRUSTED";
char game_state[64] = ...;
extern void eval(const char*);

void update_game_state(int x, int y, char c) {
if (x < 8 && y < 8) {
game_state[y * 8 + x] = c;

}
eval(TRUSTED);

}

3



Motivation

insufficient constraints

static const char* trusted = "TRUSTED";
char game_state[64] = ...;
extern void eval(const char*);

void update_game_state(int x, int y, char c) {
if (x < 8 && y < 8) {
game_state[y * 8 + x] = c;

}
eval(TRUSTED);

}

3



Motivation

can overflow

static const char* trusted = "TRUSTED";
char game_state[64] = ...;
extern void eval(const char*);

void update_game_state(int x, int y, char c) {
if (x < 8 && y < 8) {
game_state[y * 8 + x] = c;

}
eval(TRUSTED);

}

3



Motivation

can overwrite trusted

static const char* trusted = "TRUSTED";
char game_state[64] = ...;
extern void eval(const char*);

void update_game_state(int x, int y, char c) {
if (x < 8 && y < 8) {
game_state[y * 8 + x] = c;

}
eval(TRUSTED);

}

3



Motivation

!!!

static const char* trusted = "TRUSTED";
char game_state[64] = ...;
extern void eval(const char*);

void update_game_state(int x, int y, char c) {
if (x < 8 && y < 8) {
game_state[y * 8 + x] = c;

}
eval(TRUSTED);

}

3



Motivation

Everything Old is New Again: Binary Security of WebAssembly

Daniel Lehmann
University of Stuttgart

Johannes Kinder
Bundeswehr University Munich

Michael Pradel
University of Stuttgart

Abstract
WebAssembly is an increasingly popular compilation target
designed to run code in browsers and on other platforms safely
and securely, by strictly separating code and data, enforcing
types, and limiting indirect control flow. Still, vulnerabilities
in memory-unsafe source languages can translate to vulnera-
bilities in WebAssembly binaries. In this paper, we analyze to
what extent vulnerabilities are exploitable in WebAssembly
binaries, and how this compares to native code. We find that
many classic vulnerabilities which, due to common mitiga-
tions, are no longer exploitable in native binaries, are com-
pletely exposed in WebAssembly. Moreover, WebAssembly
enables unique attacks, such as overwriting supposedly con-
stant data or manipulating the heap using a stack overflow. We
present a set of attack primitives that enable an attacker (i) to
write arbitrary memory, (ii) to overwrite sensitive data, and
(iii) to trigger unexpected behavior by diverting control flow
or manipulating the host environment. We provide a set of
vulnerable proof-of-concept applications along with complete
end-to-end exploits, which cover three WebAssembly plat-
forms. An empirical risk assessment on real-world binaries
and SPEC CPU programs compiled to WebAssembly shows
that our attack primitives are likely to be feasible in practice.
Overall, our findings show a perhaps surprising lack of binary
security in WebAssembly. We discuss potential protection
mechanisms to mitigate the resulting risks.

1 Introduction

WebAssembly is an increasingly popular bytecode language
that offers a compact and portable representation, fast ex-
ecution, and a low-level memory model [32]. Announced
in 2015 [19] and implemented by all major browsers in
2017 [65], WebAssembly is supported by 92% of all global
browser installations as of June 2020.1 The language is de-
signed as a compilation target, and several widely used compil-
ers exist, e.g., Emscripten for C and C++, or the Rust compiler,

1https://caniuse.com/#search=WebAssembly

both based on LLVM. Originally devised for client-side com-
putation in browsers, WebAssembly’s simplicity and general-
ity has sparked interest to use it as a platform for many other
domains, e.g., on the server side in conjunction with Node.js,
for “serverless” cloud computing [33–35, 64], Internet of
Things and embedded devices [31], smart contracts [44, 53],
or even as a standalone runtime [4, 23]. WebAssembly and
its ecosystem, although still evolving, have already gathered
significant momentum and will be an important computing
platform for years to come.

WebAssembly is often touted for its safety and security. For
example, both the initial publication [32] and the official web-
site [12] highlight security on the first page. Indeed, in Web-
Assembly’s core application domains, security is paramount:
on the client side, users run untrusted code from websites in
their browser; on the server side in Node.js, WebAssembly
modules operate on untrusted inputs from clients; in cloud
computing, providers run untrusted code from users; and in
smart contracts, programs may handle large sums of money.

There are two main aspects to the security of the WebAs-
sembly ecosystem: (i) host security, the effectiveness of the
runtime environment in protecting the host system against
malicious WebAssembly code; and (ii) binary security, the
effectiveness of the built-in fault isolation mechanisms in
preventing exploitation of otherwise benign WebAssembly
code. Attacks against host security rely on implementation
bugs [16, 59] and therefore are typically specific to a given
virtual machine (VM). Attacks against binary security—the
focus of this paper—are specific to each WebAssembly pro-
gram and its compiler toolchain. The design of WebAssembly
includes various features to ensure binary security. For exam-
ple, the memory maintained by a WebAssembly program is
separated from its code, the execution stack, and the data struc-
tures of the underlying VM. To prevent type-related crashes
and attacks, binaries are designed to be easily type-checked,
which they are statically before execution. Moreoever, WebAs-
sembly programs can only jump to designated code locations,
a form of fault isolation that prevents many classic control
flow attacks.

static const char* trusted = "TRUSTED";
char game_state[64] = ...;
extern void eval(const char*);

void update_game_state(int x, int y, char c) {
if (x < 8 && y < 8) {
game_state[y * 8 + x] = c;

}
eval(TRUSTED);

}

3



Safety Properties

static const char* trusted = "TRUSTED";
char game_state[64] = ...;
extern void eval(const char*);

void update_game_state(int x, int y, char c) {
if (x < 8 && y < 8) {
game_state[y * 8 + x] = c;

}
eval(TRUSTED);

}

4



Safety Properties

No-i32-Overflow

static const char* trusted = "TRUSTED";
char game_state[64] = ...;
extern void eval(const char*);

void update_game_state(int x, int y, char c) {
if (x < 8 && y < 8) {
game_state[y * 8 + x] = c;

}
eval(TRUSTED);

}

4



Safety Properties

No-Sensitive-Overwrite

static const char* trusted = "TRUSTED";
char game_state[64] = ...;
extern void eval(const char*);

void update_game_state(int x, int y, char c) {
if (x < 8 && y < 8) {
game_state[y * 8 + x] = c;

}
eval(TRUSTED);

}

4



Safety Properties

assert(trusted == "TRUSTED")

static const char* trusted = "TRUSTED";
char game_state[64] = ...;
extern void eval(const char*);

void update_game_state(int x, int y, char c) {
if (x < 8 && y < 8) {
game_state[y * 8 + x] = c;

}
eval(TRUSTED);

}

4



Safety Properties

static const char* trusted = "TRUSTED";
char game_state[64] = ...;
extern void eval(const char*);

void update_game_state(int x, int y, char c) {
if (0 <= x && x < 8 && 0 <= y && y < 8) {
game_state[y * 8 + x] = c;

}
eval(TRUSTED);

}

5



The Semantics of WebAssembly

global data (memory, globals, function definitions)

S; F; instr∗

6



The Semantics of WebAssembly

function local data (locals)

S; F; instr∗

6



The Semantics of WebAssembly

stack (values, control flow data, instructions)

S; F; instr∗

6



The Semantics of WebAssembly

S; F; instr∗

6



The Semantics of WebAssembly

S; F; instr∗

E[(i32.const 2) (i32.const 3) i32.add]

6



The Semantics of WebAssembly

S; F; instr∗

E[(i32.const 2) (i32.const 3) i32.add]

6



The Semantics of WebAssembly

S; F; instr∗

E[(i32.const 2) (i32.const 3) i32.add]

S; F; (i32.const c1) (i32.const c2) i32.add ↪→ S; F; (i32.const c1 + c2)

6



The Semantics of WebAssembly

S; F; instr∗

E[(i32.const 5)]

S; F; (i32.const c1) (i32.const c2) i32.add ↪→ S; F; (i32.const c1 + c2)

6



The Semantics of WebAssembly

S; F; instr∗ ↪→ S′; F′; instr’∗

6



The Semantics of WebAssembly

S; F; instr∗ ↪→ S′; F′; instr’∗

6



The Semantics of WebAssembly

S; F; instr∗ ↪→ S′; F′; instr’∗

6



The Semantics of WebAssembly

S; F; instr∗ ↪→ S′; F′; instr’∗

110

WasmRef-Isabelle: A Verified Monadic Interpreter and

Industrial Fuzzing Oracle for WebAssembly

CONRAD WATT, University of Cambridge, UK

MAJA TRELA, University of Cambridge, UK and Jane Street, UK

PETER LAMMICH, University of Twente, Netherlands

FLORIAN MÄRKL, Technical University of Munich, Germany

We present WasmRef-Isabelle, a monadic interpreter for WebAssembly written in Isabelle/HOL and proven

correct with respect to the WasmCert-Isabelle mechanisation of WebAssembly. WasmRef-Isabelle has been

adopted and deployed as a fuzzing oracle in the continuous integration infrastructure of Wasmtime, a widely

used WebAssembly implementation. Previous efforts to fuzz Wasmtime against WebAssembly’s official OCaml

reference interpreter were abandoned by Wasmtime’s developers after the reference interpreter exhibited

unacceptable performance characteristics, which its maintainers decided not to fix in order to preserve the

interpreter’s close definitional correspondence with the official specification. With WasmRef-Isabelle, we

achieve the best of both worlds — an interpreter fast enough to be useable as a fuzzing oracle that also

maintains a close correspondence with the specification through a mechanised proof of correctness.

We verify the correctness of WasmRef-Isabelle through a two-step refinement proof in Isabelle/HOL. We

demonstrate thatWasmRef-Isabelle significantly outperforms the official reference interpreter, has performance

comparable to a Rust debug build of the industry WebAssembly interpreter Wasmi, and competes with

unverified oracles on fuzzing throughput when deployed in Wasmtime’s fuzzing infrastructure. We also

present several new extensions to WasmCert-Isabelle which enhance WasmRef-Isabelle’s utility as a fuzzing

oracle: we add support for a number of upcoming WebAssembly features, and fully mechanise the numeric

semantics of WebAssembly’s integer operations.

CCS Concepts: • Software and its engineering→ Software verification.

Additional Key Words and Phrases: theorem proving, refinement, virtual machine, WasmCert

ACM Reference Format:

Conrad Watt, Maja Trela, Peter Lammich, and Florian Märkl. 2023. WasmRef-Isabelle: A Verified Monadic

Interpreter and Industrial Fuzzing Oracle for WebAssembly. Proc. ACM Program. Lang. 7, PLDI, Article 110

(June 2023), 24 pages. https://doi.org/10.1145/3591224

1 INTRODUCTION

WebAssembly (Wasm) is a low-level bytecode language first introduced by Haas et al. [2017] in
2017. It is the first programming language since JavaScript to enjoy wide native support in Web
browsers, and is intended to be a natural compilation target for languages such as C, C++, and Rust,
enabling code written in these languages to be compiled to Wasm and embedded in Web pages.
Wasm is exceptional in that its normative specification is stated in terms of a small-step formal
semantics.

Authors’ addresses: Conrad Watt, conrad.watt@cl.cam.ac.uk, University of Cambridge, UK; Maja Trela, University of

Cambridge, UK and Jane Street, UK; Peter Lammich, University of Twente, Netherlands; Florian Märkl, Technical University

of Munich, Germany.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART110

https://doi.org/10.1145/3591224

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

6



Horn-Clause-Based Abstractions

S; F; instr∗

7



Horn-Clause-Based Abstractions

S; F; instr∗
α {

MState(. . .), Table(. . .), . . .
}

7



Horn-Clause-Based Abstractions

S; F; instr∗
α {

MState(. . .), Table(. . .), . . .
}

S; F; (i32.const c1) (i32.const c2) i32.add

↪→ S; F; (i32.const c1 + c2)

7



Horn-Clause-Based Abstractions

S; F; instr∗
α {

MState(. . .), Table(. . .), . . .
}

S; F; (i32.const c1) (i32.const c2) i32.add

↪→ S; F; (i32.const c1 + c2)

α {
MState(c1 : c2 : st . . .) =⇒

MState((c1 + c2) : st . . .)
}

7



Horn-Clause-Based Abstractions

α {
MState(. . .), Table(. . .), . . .

}
α {

MState(c1 : c2 : st . . .) =⇒
MState((c1 + c2) : st . . .)

}
S; Ffid; instr∗

S; Ffid; (i32.const c1) (i32.const c2) i32.addpc
↪→ S; Ffid; (i32.const c1 + c2)

7



Horn-Clause-Based Abstractions

α

α

S; Ffid; instr∗
{
MStatefid,pc(. . .), Table(. . .), . . .

}
S; Ffid; (i32.const c1) (i32.const c2) i32.addpc

↪→ S; Ffid; (i32.const c1 + c2)

{
MStatefid,pc(c1 : c2 : st . . .) =⇒

MStatefid,pc+1((c1 + c2) : st . . .)
}

7



Horn-Clause-Based Abstractions

α

α

S; Ffid; instr∗
{
MStatefid,pc(. . .), Table(. . .), . . .

}
{
MStatefid,pc(c1 : c2 : st . . .) =⇒

MStatefid,pc+1((c1 + c2) : st . . .)
}S; Ffid; (i32.const c1) (i32.const c2) i32.addpc

↪→↪→ S; Ffid; (i32.const c1 + c2)

7



8



Implementation
rule binOpRule := for
(!fid: int) in functionIds(),
(!op: int) in binOps(),
(!pc: int) in pcsForFunctionIdAndOpcode(!fid, !op)

clause [?x: Value, ?y: Value, ?st: tuple<Value; ss{!fid,!pc}()-2>,
?gt: tuple<Value; gs()>, ?lt: tuple<Value; ls{!fid}()>,
?mem: Memory, ?at0: tuple<Value; as{!fid}()>,
?gt0: tuple<Value; gs()>, ?mem0: Memory]

MState{!fid, !pc}(?x :: ?y :: ?st, ?gt, ?lt, ?mem, ?at0, ?gt0, ?mem0)
=> MState{!fid, !pc + 1}(binOp{!op}(?y, ?x) :: ?st, ?gt, ?lt, ?mem, ?at0, ?gt0, ?mem0)

;

9



Interaction With Embedders

10



Interaction With Embedders

10



Interaction With Embedders

10



Interaction With Embedders

10



Interaction With Embedders

S; F; valn (call a) ↪→↪→ S′; F; result

where a is a host function

10



Interaction With Embedders

S; F; valn (call a) ↪→↪→ S′; F; result

where a is a host function

10



Interaction With Embedders

S; F; valn (call a) ↪→↪→ S′; F; result

where a is a host function

globals

10



Interaction With Embedders

S; F; valn (call a) ↪→↪→ S′; F; result

where a is a host function

globals

memories

10



Interaction With Embedders

S; F; valn (call a) ↪→↪→ S′; F; result

where a is a host function

globals

memories

functions

10



Evaluation

11



Evaluation
Is the required
state reachable?

2%
98%

unfavorable result

timeout (10s)

favorable result

11



Evaluation
Is the required
state reachable?

2%
98%

unfavorable result

timeout (10s)

favorable result

Are any other
states reachable?*

9%
3%
88%

*excluding floating point

11



Evaluation
Is the required
state reachable?

2%
98%

unfavorable result

timeout (10s)

favorable result

Are any other
states reachable?*

9%
3%
88%

*excluding floating point

2 case studies

11



Conclusions / Future Work

Wappler is the first sound reachability
analysis approach for WebAssembly
possible improvements

support multiple modules
support floating points
increase efficiency of memory
handling
analysis-specific abstractions
increase composability https://secpriv.wien/wappler

12


