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Verifiable Computation,
Blockchains, and ZK-SNARKs



Verifiable Computation and ZK-SNARKs

Verifiable Computation for Trusted Cloud/P2P:

• Server: computes some function F , makes use of secret data.
• Clients: verify the correctness of the results.
• Use ZK-SNARKs:

� Server ⇐⇒ Prover, Clients ⇐⇒ Verifiers

• Virtual Machines, Blockchains, Recursive SNARKs…
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Hash functions and ZK-SNARKs

Hash functions play a central role:

• Blockchain roll-ups involve Merkle Tree (MT) hashing…
• …And so does verification of recursive proofs.
• MT as commitment scheme ⇒ opening proof.
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Figure 1: Left: binary Merkle Tree. Right: Fractal [6] verifier.
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Arithmetization-Oriented Hash Functions

Computation complexity of a ZK-SNARK protocol:

• Proof Verification is fast (often constant time).
• Generation depends on the hash multiplicative complexity:

� arithmetic circuit over a large (64/256-bits) prime field Fp .
• Bit-oriented hash functions have high mult. complexity.

� Bitwise operations in terms of field addition/multiplication.
• Arithmetization-oriented hash functions: defined over Fp .

� We will consider Poseidon [8] as an example.

Primitive Underlying Field Native evaluation time Proof generation time

SHA-256 F2 ≈ 1 ≈ 1000

Poseidon Fp ≈ 10 ≈ 1
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The PGV-LC and PGV-ELC Modes
of Compression



Blockcipher/Permutation-based hash functions

Compositional paradigms to obtain provable security guarantees:

• Permutation-based, like Sponge, used in SHA-3, Poseidon.
� Permutation is often a fixed-key blockcipher.
� Provably secure over Fp (SAFE [12]).
� Cannot use the key input to compress data.

• Blockcipher-based, like Davies-Meyer, used in SHA-2:
� Exploit both key and plaintext inputs for compression.
� Provably secure over F2, (PGV [14, 4]).
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The PGV-LC mode

Inspired by the PGV modes, we introduce the PGV-LC mode:

• Underlying Blockcipher E : Fκ
p × Fn

p → Fn
p .

• Matrix R ∈ F`×n
p parametrizes output size.

� Compresses its input ⇒ ` ≤ n.
� Algebraic generalization of e.g. truncation and chopping.
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Figure 2: A depiction of the PGV-LC mode: x ∈ Fκ
p , y ∈ Fn

p , h ∈ F`
p .
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The PGV-ELC mode

We further generalize the design with the PGV-ELC mode:

• Matrices K ∈ Fκ×κ′
p and P ∈ Fn×n′

p parametrize input size.
� Expand their inputs ⇒ κ′ ≤ κ and n′ ≤ n.
� Algebraic generalization of e.g. zero-padding.

• Matrix F ∈ F`×n′
p adapts input to output size.

� Expands its input ⇒ ` ≤ n′.
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Figure 3: Visualization of PGV-ELC: x ∈ Fκ′

p , y ∈ Fn′

p , h ∈ F`
p
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How to Prove Your Security

In order to prove that our modes are secure, we need:

• A formal model: the ideal cipher E $← Block
(
Fκ

p ,Fn
p
)
.

� Standard security assumption in classic cryptography.
� ≈ For permutations, ideal permutation π

$← Perm
(
Fn

p
)
.

• An adversary A:
� Unbounded randomized algorithm.
� Can query E forward and backward via the oracle E .

• A security notion (e.g. collision resistance).
• An advantage function Advnotion

scheme(A, q):
� Must be negligible in the number q of oracle queries.
� Advnotion

scheme(q) = maxA
{

Advnotion
scheme(A, q)

}
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PGV-LC Security

Collision resistance:

Advcol
C (A, q) = Pr

[(
x, x ′) $←AE() : x 6= x ′ ∧ CE (x) = CE

(
x ′)]

For PGV-LC CE (x, y) = R · (Ey(x) + x):

1. Consider R right-invertible (full row rank).
2. Fn

p is partitioned into p` equivalence classes.
3. A can exploit partition unbalances from oracle replies.
4. Still, Advcol

C (q) ≤ q2+q
p`−q (≈ birthday attack).

5. Similarly, for preimage resistance: Advpre
C (q) ≤ q

p`−q .
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PGV-ELC Security

Collision resistance:

Advcol
C (A, q) = Pr

[(
x, x ′) $←AE() : x 6= x ′ ∧ CE (x) = CE

(
x ′)]

For PGV-ELC CE (x, y) = R · EKy(Px) + Fx:

1. Consider K and P left-invertible, F right-invertible.
2. Linear transformations induce partitions.
3. ‘Meaningless’ queries, cannot be used to form a collision:

• However, can be exploited to guide further queries.

4. Nevertheless, we again obtain Advcol
C (q) ≤ q2+q

p`−q .
5. Similarly, for preimage resistance: Advpre

C (q) ≤ q
p`−q .
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Merkle Tree Opening Security

Security notion for openings over a t-ary Merkle Tree:

• Merkle Tree intended as a hash function H.
• Generator G creates an opening π.
• Verifier V checks validity of π.
• Adversary A attempts to forge π̃.

Formally:

Advopen
H,G,V(A, q) =

Pr
[
M $←

(
Fm

p
)∗
, π̃

$←AE(M) : ∀i ∈ N : π̃ 6= G(M, i) ∧ V(π̃,HC(M)) = >
]
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Merkle Tree Opening Security (cont.)

For a t-ary Merkle Tree:

• Advopen
H,G,V(q) ≤ Advcol

C (q)
• Additionally, Advcol

H (q) ≤ Advcol
C (q) + Advpre

C (q).
• Proof is standard, generalizes reasoning for binary trees.

=⇒ Our modes can be securely used for MT commitments.
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Implementations and Experiments



Poseidon-DM

Consider the Poseidon hash function:

• Sponge mode over the fixed-key Hades block cipher.
• Affine key scheduler, which we instantiated with:

MK,2 =

[
1 2

2 1

]
MK,4 =


2 3 1 1

1 2 3 1

3 1 2 1

1 1 1 2


• Instantied in PGV-LC: Poseidon-DM.
• All other parameters kept the same as in Poseidon.

� Focus on improvement due to compression mode.
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R1CS arithmetization

We considred R1CS arithmetization:

• Used by many ZK-SNARKs (Groth16, Aurora, Spartan, …):
� R1CS System: Ax � Bx = Cx

• Concrete performance tends to follow theoretical numbers.

Compression Rate

Hash 2:1 4:1 8:1

Poseidon 237 288 384

Poseidon-DM 213 213 261

Constraint Reduction

Poseidon-DM w.r.t. Poseidon −11% −35% −47%

Table 1: Number of R1CS constraints for target primitives.
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Benchmarks: Proof Generation

Time to generate a MT opening proof:

• Scalar field of the BLS12-381 elliptic curve: log2(p) ≈ 255.
• ZK-SNARK framework: Groth16 (libsnark).
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Benchmarks: Native execution

Native evaluation time speedup :

• Averaged over the scalar field of various curves:
� BLS12-381, BN254, Ed-180.

Library 2:1 4:1 8:1

NTL 1.17× 2.80× 2.51×

libff 1.17× 2.87× 2.57×

libarith 1.15× 2.27× 2.27×

Table 2: Poseidon-DM speed-up for a single compression call.
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Benchmarks: Arity Matters

Choosing an optimal arity of the Merkle Tree matters:

• Binary trees are the most common choice.
• For generating an opening proof:

� 8:1 Poseidon-DM ≈ 2.5× faster than 2:1 Poseidon.
• For building the tree:

� 4:1 Poseidon-DM ≈ 4× faster than 2:1 Poseidon.
💡 Improve existing t-ary Merkle Tree opening proof circuits:

� ≈ 10% improvement to known strategies.
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Roll credits

T he End
Thank you for your attention!
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