
Efficient and Secure Compression Functions
for Arithmetization-Oriented Hashing
CSF 2024, July 8–13

E. Andreeva1 R. Bhattacharyya2 A. Roy3 S. Trevisani1

1TU Wien, 2University of Birmingham, 3University of Innsbruck

Verifiable Computation,
Blockchains, and ZK-SNARKs

Verifiable Computation and ZK-SNARKs

Verifiable Computation for Trusted Cloud/P2P:

• Server: computes some function F , makes use of secret data.
• Clients: verify the correctness of the results.
• Use ZK-SNARKs:

� Server ⇐⇒ Prover, Clients ⇐⇒ Verifiers

• Virtual Machines, Blockchains, Recursive SNARKs…

1

Hash functions and ZK-SNARKs

Hash functions play a central role:

• Blockchain roll-ups involve Merkle Tree (MT) hashing…
• …And so does verification of recursive proofs.
• MT as commitment scheme ⇒ opening proof.

m1 m2 m3 m4 m5 m6 m7 m8

H H H H

ν3 ν4 ν5 ν6

H H

ν1 ν2

H

ν0

Figure 1: Left: binary Merkle Tree. Right: Fractal [6] verifier.

2

Arithmetization-Oriented Hash Functions

Computation complexity of a ZK-SNARK protocol:

• Proof Verification is fast (often constant time).
• Generation depends on the hash multiplicative complexity:

� arithmetic circuit over a large (64/256-bits) prime field Fp .
• Bit-oriented hash functions have high mult. complexity.

� Bitwise operations in terms of field addition/multiplication.
• Arithmetization-oriented hash functions: defined over Fp .

� We will consider Poseidon [8] as an example.

Primitive Underlying Field Native evaluation time Proof generation time

SHA-256 F2 ≈ 1 ≈ 1000

Poseidon Fp ≈ 10 ≈ 1

3

The PGV-LC and PGV-ELC Modes
of Compression

Blockcipher/Permutation-based hash functions

Compositional paradigms to obtain provable security guarantees:

• Permutation-based, like Sponge, used in SHA-3, Poseidon.
� Permutation is often a fixed-key blockcipher.
� Provably secure over Fp (SAFE [12]).
� Cannot use the key input to compress data.

• Blockcipher-based, like Davies-Meyer, used in SHA-2:
� Exploit both key and plaintext inputs for compression.
� Provably secure over F2, (PGV [14, 4]).

0

x0

c elements

r elements

π

x1

π

…

y

y0

E

x0

x1 � y

Sponge Davies-Meyer

4

The PGV-LC mode

Inspired by the PGV modes, we introduce the PGV-LC mode:

• Underlying Blockcipher E : Fκ
p × Fn

p → Fn
p .

• Matrix R ∈ F`×n
p parametrizes output size.

� Compresses its input ⇒ ` ≤ n.
� Algebraic generalization of e.g. truncation and chopping.

Ey

x

...

. . .

...

...

R

..
. h

Figure 2: A depiction of the PGV-LC mode: x ∈ Fκ
p , y ∈ Fn

p , h ∈ F`
p .

5

The PGV-ELC mode

We further generalize the design with the PGV-ELC mode:

• Matrices K ∈ Fκ×κ′
p and P ∈ Fn×n′

p parametrize input size.
� Expand their inputs ⇒ κ′ ≤ κ and n′ ≤ n.
� Algebraic generalization of e.g. zero-padding.

• Matrix F ∈ F`×n′
p adapts input to output size.

� Expands its input ⇒ ` ≤ n′.

EP

K

y

F

...

...

R

..
.

h

...

...

...

. . .

. . .

x

Figure 3: Visualization of PGV-ELC: x ∈ Fκ′

p , y ∈ Fn′

p , h ∈ F`
p

6

How to Prove Your Security

In order to prove that our modes are secure, we need:

• A formal model: the ideal cipher E $← Block
(
Fκ

p ,Fn
p
)
.

� Standard security assumption in classic cryptography.
� ≈ For permutations, ideal permutation π

$← Perm
(
Fn

p
)
.

• An adversary A:
� Unbounded randomized algorithm.
� Can query E forward and backward via the oracle E .

• A security notion (e.g. collision resistance).
• An advantage function Advnotion

scheme(A, q):
� Must be negligible in the number q of oracle queries.
� Advnotion

scheme(q) = maxA
{

Advnotion
scheme(A, q)

}
7

PGV-LC Security

Collision resistance:

Advcol
C (A, q) = Pr

[(
x, x ′) $←AE() : x 6= x ′ ∧ CE (x) = CE

(
x ′)]

For PGV-LC CE (x, y) = R · (Ey(x) + x):

1. Consider R right-invertible (full row rank).
2. Fn

p is partitioned into p` equivalence classes.
3. A can exploit partition unbalances from oracle replies.
4. Still, Advcol

C (q) ≤ q2+q
p`−q (≈ birthday attack).

5. Similarly, for preimage resistance: Advpre
C (q) ≤ q

p`−q .

8

PGV-ELC Security

Collision resistance:

Advcol
C (A, q) = Pr

[(
x, x ′) $←AE() : x 6= x ′ ∧ CE (x) = CE

(
x ′)]

For PGV-ELC CE (x, y) = R · EKy(Px) + Fx:

1. Consider K and P left-invertible, F right-invertible.
2. Linear transformations induce partitions.
3. ‘Meaningless’ queries, cannot be used to form a collision:

• However, can be exploited to guide further queries.

4. Nevertheless, we again obtain Advcol
C (q) ≤ q2+q

p`−q .
5. Similarly, for preimage resistance: Advpre

C (q) ≤ q
p`−q .

9

Merkle Tree Opening Security

Security notion for openings over a t-ary Merkle Tree:

• Merkle Tree intended as a hash function H.
• Generator G creates an opening π.
• Verifier V checks validity of π.
• Adversary A attempts to forge π̃.

Formally:

Advopen
H,G,V(A, q) =

Pr
[
M $←

(
Fm

p
)∗
, π̃

$←AE(M) : ∀i ∈ N : π̃ 6= G(M, i) ∧ V(π̃,HC(M)) = >
]

10

Merkle Tree Opening Security (cont.)

For a t-ary Merkle Tree:

• Advopen
H,G,V(q) ≤ Advcol

C (q)
• Additionally, Advcol

H (q) ≤ Advcol
C (q) + Advpre

C (q).
• Proof is standard, generalizes reasoning for binary trees.

=⇒ Our modes can be securely used for MT commitments.

11

Implementations and Experiments

Poseidon-DM

Consider the Poseidon hash function:

• Sponge mode over the fixed-key Hades block cipher.
• Affine key scheduler, which we instantiated with:

MK,2 =

[
1 2

2 1

]
MK,4 =


2 3 1 1

1 2 3 1

3 1 2 1

1 1 1 2


• Instantied in PGV-LC: Poseidon-DM.
• All other parameters kept the same as in Poseidon.

� Focus on improvement due to compression mode.

12

R1CS arithmetization

We considred R1CS arithmetization:

• Used by many ZK-SNARKs (Groth16, Aurora, Spartan, …):
� R1CS System: Ax � Bx = Cx

• Concrete performance tends to follow theoretical numbers.

Compression Rate

Hash 2:1 4:1 8:1

Poseidon 237 288 384

Poseidon-DM 213 213 261

Constraint Reduction

Poseidon-DM w.r.t. Poseidon −11% −35% −47%

Table 1: Number of R1CS constraints for target primitives.

13

Benchmarks: Proof Generation

Time to generate a MT opening proof:

• Scalar field of the BLS12-381 elliptic curve: log2(p) ≈ 255.
• ZK-SNARK framework: Groth16 (libsnark).

0 0.5 1 1.5 2 2.5

·105

0

200

400

600

800

|M| [Fp elements]

Ti
m

e
[m

s]
Poseidon (2:1) Poseidon-DM (2:1)
Poseidon (4:1) Poseidon-DM (4:1)
Poseidon (8:1) Poseidon-DM (8:1)

14

Benchmarks: Native execution

Native evaluation time speedup :

• Averaged over the scalar field of various curves:
� BLS12-381, BN254, Ed-180.

Library 2:1 4:1 8:1

NTL 1.17× 2.80× 2.51×

libff 1.17× 2.87× 2.57×

libarith 1.15× 2.27× 2.27×

Table 2: Poseidon-DM speed-up for a single compression call.

15

Benchmarks: Arity Matters

Choosing an optimal arity of the Merkle Tree matters:

• Binary trees are the most common choice.
• For generating an opening proof:

� 8:1 Poseidon-DM ≈ 2.5× faster than 2:1 Poseidon.
• For building the tree:

� 4:1 Poseidon-DM ≈ 4× faster than 2:1 Poseidon.
💡 Improve existing t-ary Merkle Tree opening proof circuits:

� ≈ 10% improvement to known strategies.

16

Roll credits

T he End
Thank you for your attention!

17

Bibliography i

Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab
Roy, and Tyge Tiessen.
Mimc: Efficient encryption and cryptographic hashing
with minimal multiplicative complexity.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in
Cryptology – ASIACRYPT 2016, pages 191–219, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

Elena Andreeva, Rishiraj Bhattacharyya, Arnab Roy, and
Stefano Trevisani.
On efficient and secure compression modes for
arithmetization-oriented hashing.
Cryptology ePrint Archive, Paper 2024/047, 2024.

18

Bibliography ii

https://eprint.iacr.org/2024/047.

Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena
Andreeva, and Bart Preneel.
Let’s go eevee! a friendly and suitable family of aead
modes for iot-to-cloud secure computation.
In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’23, pages
2546–2560, New York, NY, USA, 2023. Association for
Computing Machinery.

19

https://eprint.iacr.org/2024/047

Bibliography iii

John Black, Phillip Rogaway, and Thomas Shrimpton.
Black-box analysis of the block-cipher-based
hash-function constructions from pgv.
Cryptology ePrint Archive, Paper 2002/066, 2002.
https://eprint.iacr.org/2002/066.

Joppe W. Bos and Peter L. Montgomery.
Montgomery arithmetic from a software perspective.
Cryptology ePrint Archive, Paper 2017/1057, 2017.
https://eprint.iacr.org/2017/1057.

20

https://eprint.iacr.org/2002/066
https://eprint.iacr.org/2017/1057

Bibliography iv

Alessandro Chiesa, Dev Ojha, and Nicholas Spooner.
Fractal: Post-quantum and transparent recursive proofs
from holography.
Cryptology ePrint Archive, Paper 2019/1076, 2019.
https://eprint.iacr.org/2019/1076.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186–208, 1989.

21

https://eprint.iacr.org/2019/1076

Bibliography v

Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger,
Arnab Roy, and Markus Schofnegger.
Poseidon: A new hash function for zero-knowledge proof
systems.
Cryptology ePrint Archive, Paper 2019/458, 2019.
https://eprint.iacr.org/2019/458.

Lorenzo Grassi, Dmitry Khovratovich, and Markus
Schofnegger.
Poseidon2: A faster version of the poseidon hash
function.
Cryptology ePrint Archive, Paper 2023/323, 2023.
https://eprint.iacr.org/2023/323.

22

https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2023/323

Bibliography vi

Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger,
Dragos Rotaru, and Markus Schofnegger.
On a generalization of substitution-permutation
networks: The hades design strategy.
Cryptology ePrint Archive, Paper 2019/1107, 2019.
https://eprint.iacr.org/2019/1107.

Jens Groth.
On the size of pairing-based non-interactive arguments.
Cryptology ePrint Archive, Paper 2016/260, 2016.
https://eprint.iacr.org/2016/260.

23

https://eprint.iacr.org/2019/1107
https://eprint.iacr.org/2016/260

Bibliography vii

Dmitry Khovratovich, Mario Marhuenda Beltrán, and Bart
Mennink.
Generic security of the safe api and its applications.
In Jian Guo and Ron Steinfeld, editors, Advances in
Cryptology – ASIACRYPT 2023, pages 301–327, Singapore,
2023. Springer Nature Singapore.

Ralph Charles Merkle.
Secrecy, Authentication, and Public Key Systems.
PhD thesis, Stanford University, Stanford, CA, USA, 1979.
AAI8001972.

24

Bibliography viii

Bart Preneel, René Govaerts, and Joos Vandewalle.
Hash functions based on block ciphers: A synthetic
approach.
In Advances in Cryptology - CRYPTO ’93, 13th Annual
International Cryptology Conference, Santa Barbara,
California, USA, August 22-26, 1993, Proceedings, volume 773
of Lecture Notes in Computer Science, pages 368–378.
Springer, 1993.

25

	Verifiable Computation, Blockchains, and ZK-SNARKs
	The PGV-LC and PGV-ELC Modes of Compression
	Implementations and Experiments

