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Verifiable Computation,
Blockchains, and ZK-SNARKSs



Verifiable Computation and ZK-SNARKSs

Verifiable Computation for Trusted Cloud/P2P:

= Server: computes some function F, makes use of secret data.

" . verify the correctness of the results.
s Use ZK-SNARKS:
¢ Server <= Prover, =

Virtual Machines, Blockchains, Recursive SNARKs...
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Hash functions and ZK-SNARKSs

Hash functions play a central role:

= Blockchain roll-ups involve Merkle Tree (MT) hashing...
= _.And so does verification of recursive proofs.
= MT as commitment scheme = opening proof.
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Figure 1: Left: binary Merkle Tree. Right: Fractal [6]




Arithmetization-Oriented Hash Functions

Computation complexity of a ZK-SNARK protocol:

= Proof Verification is fast (often constant time).

= Generation depends on the hash multiplicative complexity:
¢ arithmetic circuit over a large (64/256-bits) prime field F,.

= Bit-oriented hash functions have high mult. complexity.
o Bitwise operations in terms of field addition/multiplication.

= Arithmetization-oriented hash functions: defined over IFp,.
¢ We will consider POSEIDON [8] as an example.

Primitive ~ Underlying Field Native evaluation time Proof generation time

SHA-256 Iy ~1 ~ 1000
PoSEIDON F, ~ 10 ~1




The PGV-LC and PGV-ELC Modes
of Compression



Blockcipher/Permutation-based hash functions

Compositional paradigms to obtain provable security guarantees:

= Permutation-based, like Sponge, used in SHA-3, POSEIDON.
¢ Permutation is often a fixed-key blockcipher.
¢ Provably secure over F,, (SAFE [12]).
< Cannot use the key input to compress data.
= Blockcipher-based, like Davies-Meyer, used in SHA-2:
o Exploit both key and plaintext inputs for compression.
© Provably secure over Fy, (PGV [14, 4]).
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The PGV-LC mode

Inspired by the PGV modes, we introduce the PGV-LC mode:

= Underlying Blockcipher E: Fj) x F — Fp.
= Matrix R € IFf;X” parametrizes output size.
& Compresses its input = ¢ < n.
o Algebraic generalization of e.g. truncation and chopping.

Figure 2: A depiction of the PGV-LC mode: x € F&, y € F?, h € Ff;.



The PGV-ELC mode

We further generalize the design with the PGV-ELC mode:

= Matrices K € ng’i, and P ¢ FgX”I parametrize input size.
o Expand their inputs = x’ < k and n’ < n.
o Algebraic generalization of e.g. zero-padding.

= Matrix F € }Ff,x”/ adapts input to output size.
© Expands its input = ¢ < n'.

Figure 3: Visualization of PGV-ELC: x € ]Fg/, yeF" he IFf;



How to Prove Your Security

In order to prove that our modes are secure, we need:

= A formal model: the ideal cipher E & BIock(Fg,Fl’;).

¢ Standard security assumption in classic cryptography.
& = For permutations, ideal permutation 7w & Perm (Fg)

= An adversary A:

¢ Unbounded randomized algorithm.
o Can query E forward and backward via the oracle £.

= A security notion (e.g. collision resistance).

» An advantage function AdvionOoN( A, q):

¢ Must be negligible in the number g of oracle queries.
> AdVNOTION (q) — maxA{AdVNOTION (.A, q)}

scheme scheme



PGV-LC Security

Collision resistance:
AdviPh (A, q) = Pr[(x,x’) EA() i x# X A Ce(x) = CE(x’)}

For PGV-LC Ce(x,y) = R - (Ey(x) + x):

. Consider R right-invertible (full row rank).

. Fj is partitioned into p’ equivalence classes.

1

2

3. A can exploit partition unbalances from oracle replies.
4. Still, Adv®H(q) < % (= birthday attack).
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. Similarly, for preimage resistance: Adv"(q) <



PGV-ELC Security

Collision resistance:
AdviPH (A, q) = Pr[(x,x’) EA() i x# X A Ce(x) = CE(x’)}

For PGV-ELC Cg(x,y) = R - Exy(Px) + Fx:

1. Consider K and P left-invertible, F right-invertible.
2. Linear transformations induce partitions.
3. ‘Meaningless’ queries, cannot be used to form a collision:

= However, can be exploited to guide further queries.

4. Nevertheless, we again obtain Advi{®"(q) < Z +Z

5. Similarly, for preimage resistance: Advis"(q) < p[’_q.




Merkle Tree Opening Security

Security notion for openings over a t-ary Merkle Tree:

= Merkle Tree intended as a hash function H.
= Generator G creates an opening 7.
= Verifier V checks validity of 7.

= Adversary A attempts to forge 7.
Formally:

Advygy (A, q) =
Pr[M & (F7)" 7 & A5 (M) : Vi € N: & # G(M, i) AV(F, He(M)) = T
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Merkle Tree Opening Security (cont.)

For a t-ary Merkle Tree:

¢ AR (@) < AV
= Additionally, Advi"(q) < AdvP"(q) + AdviE™(q).

= Proof is standard, generalizes reasoning for binary trees.

= Our modes can be securely used for MT commitments.
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Implementations and Experiments




Consider the POSEIDON hash function:

= Sponge mode over the fixed-key HADES block cipher.

= Affine key scheduler, which we instantiated with:

— =N W
_ N W =
N = = =

= |nstantied in PGV-LC: POSEIDON-DM.
= All other parameters kept the same as in POSEIDON.

& Focus on improvement due to compression mode.
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R1CS arithmetization

We considred R1CS arithmetization:

= Used by many ZK-SNARKs (Groth16, Aurora, Spartan, ..):
¢ R1CS System: Ax ® Bx = Cx

= Concrete performance tends to follow theoretical numbers.

Compression Rate

Hash 2:1 4:1 8:1
POSEIDON 237 288 384
POSEIDON-DM 213 213 261

Constraint Reduction

POSEIDON-DM w.r.t. POSEIDON —11% —35% —47%

Table 1: Number of R1CS constraints for target primitives.
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Benchmarks: Proof Generation

Time to generate a MT opening proof:

= Scalar field of the BLS12-381 elliptic curve: logy(p) ~ 255.
= ZK-SNARK framework: Grothl6 (libsnark).

- -~ POSEIDON (2:1) —— POSEIDON-DM (2:1)
- -~ POSEIDON (4:1) —— POSEIDON-DM (4:1)
- - - POSEIDON (8:1) —— POSEIDON-DM (8:1)

M| [F, elements] .10°
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Benchmarks: Native execution

Native evaluation time speedup :

= Averaged over the scalar field of various curves:
& BLS12-381, BN254, Ed-180.

Library 2:1 4:1 8:1

NTL 1.17x  2.80x 2.51x

1libff 1.17x  2.87x 2.57x

libarith 1.16x 2.27x 2.27X

Table 2: POSEIDON-DM speed-up for a single compression call.
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Benchmarks: Arity Matters

Choosing an optimal arity of the Merkle Tree matters:

= Binary trees are the most common choice.
= For generating an opening proof:
¢ 8:1 POSEIDON-DM = 2.5x faster than 2:1 POSEIDON.
= For building the tree:
¢ 4:1 POSEIDON-DM =~ 4x faster than 2:1 POSEIDON.
Improve existing t-ary Merkle Tree opening proof circuits:

o =~ 10% improvement to known strategies.
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Roll credits

The End

Thank you for your attention!
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